政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/36948
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113392/144379 (79%)
造访人次 : 51195966      在线人数 : 936
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/36948


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/36948


    题名: 以BDI代理人架構為基礎於網路虛擬社群 之群體犯罪偵測
    A BDI-based Collective Crime Detection Service for Virtual Community
    作者: 莊竣丞
    Jhuang, Jyun Cheng
    贡献者: 苑守慈
    Yuan, Soe Tsyr
    莊竣丞
    Jhuang, Jyun Cheng
    关键词: 網路群體犯罪
    BDI代理人架構
    差別接觸理論
    社會學習理論
    網路科學
    Collective Crime
    BDI Architecture
    Theory of Differential Association
    Theory of Social Learning
    Network Science
    日期: 2007
    上传时间: 2009-09-18 20:14:56 (UTC+8)
    摘要: 本論文所定義之「網路群體犯罪」,不同於組織犯罪般有結構的犯罪團體,亦非為了追求共同利益而合作的共犯夥伴,而是網路使用者自發性互動行為下逐漸浮現的群體近似犯行為,並且普遍存在於當今各式各樣的網際網路社群,以各種不同的樣貌與形式展現。本研究以Sutherland(1978)提出之差別接觸理論與Bandura(1977)提出之社會學習理論為基礎,運用理論相關的元素與概念作為食材與食譜,以BDI代理人模式為方法來設計網路群體犯罪之模擬模式,透過動態模擬群體犯罪在不同條件下展現不同之面貌。更運用Watts(2003)主張的網路科學概念與分析方法,來分析犯罪關係網絡之特性,本研究藉由控制網路社群之使用者人數(Size)與初始犯罪率(ICR)來觀察不同組合之下所演化的網路結構差異,並從四個衡量指標:犯罪技能平均數、群聚係數、前10%使用者平均連結度、連結度小於10之比率,標示演化之網路結構的特徵。研究結果發現:1. 犯罪技能擴散的速度受到ICR高低的影響,當ICR越高的時候犯罪技能擴散的速度越快,反之,當ICR較低的時候犯罪技能擴散速度隨之減緩。2. 當ICR超越某一特定臨界值之後,使用者擁有的犯罪技能平均數與所屬社群人數成正向關係。3. ICR的高低對於群聚係數的高低有反向關係,當ICR越高則群聚係數越低,反之,當ICR越低時群聚係數越高。4. 社群使用者人數越多的情況下,群聚係數越低。5. 前10%使用者的平均連結度有隨著演化次數逐漸增加的趨勢。6. 初始犯罪率的高低與前10% 使用者的平均連結度成反比關係。7. 不論演化次數、社群人數多寡與初始犯罪率值之高低,均僅有少數犯罪者擁有高度的連結,絕大多數的使用者或犯罪者其連結度數均不高(符合power law分佈)。
    Collective crime is an emerging phenomenon along with collective intelligence in recent years. It is defined as a form of universally distributed crime originated from spontaneous interaction among community users in this paper. The issues that collective crime addresses focus on deviant or criminal behavior existing in common groups or crowds rather than traditional topics at computer crime or cybercrime. The theories, “differential association” proposed by criminologist Sutherland(1978) and “social learning” proposed by sociologist Bandura(1977), underpin the explanation of collective crime phenomena and the model design of agent-based simulation. The detection function of collective crime consists of the evolving network function based on the micro-simulation and an analysis of the function along with four indicators: average amount of crime skills, average cluster coefficient, average degree of top 10% users, and rate of users with degrees smaller than 10. The research findings are: 1. A community with higher initial crime rate (ICR) results in faster spreading of crime skills. 2. A negative relationship between the community size and the average amounts of crime skills exists, as ICR exceeds a threshold. 3. As ICR gets increasing, the average cluster coefficient gets decreasing, and vice versa. 4. The average cluster coefficient gets decreasing along with increasing community size. 5. The average degree of top 10% users gets increasing along time. 6. A negative relationship exists between ICR and the average degree of the top 10% users. 7. The distribution of the degrees of community users follows the scale-free power law distribution – whatever the network evolution times, community size and ICR are, most of the community users have fewer degrees and only few criminals have pretty high degrees relatively.
    參考文獻: 1. 林山田、林東茂、林燦璋,民94。『犯罪學』(3版),臺北市 : 三民。
    2. 林宜隆、黃讚松,民88,『網路犯罪學芻議之探討』,台灣區網際網路學術研討會(TANET’99),國立中山大學主辦。
    3. 邱議德,民92,以社會網路分析法評估工作團隊知識創造與分享,國立中正大學資訊管理研究所碩士論文。
    4. 范國勇,民94,網路犯罪成因與防治對策之研究。內政部警政署刑事警察局委託之專題研究報告,未出版。
    5. Bandura, A. 1977. Social learning theory, Englewood Cliffs, N.J.: Prentice-Hall.
    6. Barabasi, A. L., & Albert, R. 1999. “Emergence of Scaling in Random Networks,” Science (286:5439), pp. 509-512.
    7. Bosse, T., Jonker, C. M., Meij, L van der. & Treur, J. 2005. “LEADSTO: a language and environment for analysis of dynamics by SimulaTiOn,” Proceedings of MATES`05. LNAI 3550. Springer Verlag 2005, pp.165-178.
    8. Bratman, M. E. 1987. Intentions, Plans, and Practical Reason, Cambridge, MA: Harvard University.
    9. Bratman, M. E., Israel, D. J., & Pollack, M. E. 1988. “Plans and resource-bounded practical reasoning,” Computational Intelligence (4), pp. 349-355.
    10. Clarke, R. V., 2004. “Technology, Criminology and Crime Science,” European Journal on Criminal Policy and Research (10:1), pp. 55-63
    11. Ferber, J. 1999. Multi-agent systems: an introduction to distributed artificial intelligence (Addison-Wesley Longman, Trans.), New York: Addison-Wesley Longman. (Original work published 1995)
    12. Georgeff, M. P., & Lansky, A. L. 1987. “Reactive reasoning and planning,” Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87), Seattle, Washington, pp. 677-682.
    13. Latane, B., & Wolf, S. 1981. “The Social Impact of Majorities and Minorities,” Psychological Review (88:5), pp. 438-453.
    14. Latora, V., & Marchiori, M. 2003. “Economic small-world behavior in weighted networks,” The European Physical Journal B - Condensed Matter and Complex Systems (32:2), pp. 249-263.
    15. Newman, M. E. J. 2003. “The structure and function of complex networks,” SIAM Review (45:2), pp. 167–256.
    16. Panzarasa, P., Jennings, N. R., & Norman, T. J. 2001. “Social mental shaping: modelling the impact of sociality on autonomous agents` mental states,” Computational Intelligence (17:4). pp. 738-782.
    17. Rao, A. S., & Georgeff, M. P. 1995. “BDI agents: from theory to practice,” Proceedings of the First International Conference on Multi-Agent Systems (ICMAS’95), San Francisco, pp. 312–319.
    18. Sutherland, E. H., & Cressey, D. R. 1978. Criminology (10th ed.), Philadelphia: Lippencott.
    19. Williams III, F. P., & McShane, M. D. 1998. Criminology Theory: Selected Classic Readings (2nd ed.), Cincinnati, Ohio: Anderson Publishing.
    20. Watts , D. J. 2003. Six degrees: the science of a connected age, New York: W. W. Norton & Company.
    21. Wooldridge, M. J. 2000. Reasoning About Rational Agents, Cambridge, MA: The MIT Press.
    22. Young, H. P. 2007. “Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning,” CSED Working Paper.
    描述: 碩士
    國立政治大學
    資訊管理研究所
    95356030
    96
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0095356030
    数据类型: thesis
    显示于类别:[資訊管理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    603001.pdf295KbAdobe PDF2888检视/开启
    603002.pdf296KbAdobe PDF2858检视/开启
    603003.pdf137KbAdobe PDF2893检视/开启
    603004.pdf370KbAdobe PDF2890检视/开启
    603005.pdf385KbAdobe PDF21017检视/开启
    603006.pdf416KbAdobe PDF23127检视/开启
    603007.pdf494KbAdobe PDF21147检视/开启
    603008.pdf454KbAdobe PDF2929检视/开启
    603009.pdf1329KbAdobe PDF21680检视/开启
    603010.pdf347KbAdobe PDF2892检视/开启
    603011.pdf368KbAdobe PDF2947检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈