English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51053087      Online Users : 927
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36931
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36931


    Title: 門檻式自動迴歸模型參數之近似信賴區間
    Approximate confidence sets for parameters in a threshold autoregressive model
    Authors: 陳慎健
    Chen, Shen Chien
    Contributors: 翁久幸
    Weng, Chiu Hsing
    陳慎健
    Chen, Shen Chien
    Keywords: 門檻式自動迴歸模型
    非常弱近似法
    適性化線性模型
    修正信賴區間
    蒙地卡羅法
    差分法
    threshold autoregressive model
    very weak approximation
    adaptive linear model
    corrected confidence stes
    Monte Carlo method
    difference quotient method
    Date: 2008
    Issue Date: 2009-09-18 20:11:16 (UTC+8)
    Abstract: 本論文主要在估計門檻式自動迴歸模型之參數的信賴區間。由線性自動迴歸
    模型衍生出來的非線性自動迴歸模型中,門檻式自動迴歸模型是其中一種經常會被應用到的模型。雖然,門檻式自動迴歸模型之參數的漸近理論已經發展了許多;但是,相較於大樣本理論,有限樣本下參數的性質討論則較少。對於有限樣本的研究,Woodroofe (1989) 提出一種近似法:非常弱近似法。 Woodroofe 和 Coad (1997) 則利用此方法去架構一適性化線性模型之參數的修正信賴區間。Weng 和 Woodroofe (2006) 則將此近似法應用於線性自動迴歸模型。這個方法的應用始於定義一近似樞紐量,接著利用此方法找出近似樞紐量的近似期望值及近似變異數,並對此近似樞紐量標準化,則標準化後的樞紐量將近似於標準常態分配,因此得以架構參數的修正信賴區間。而在線性自動迴歸模型下,利用非常弱展開所導出的近似期望值及近似變異數僅會與一階動差及二階動差的微分有關。因此,本論文的研究目的就是在樣本數為適當的情況下,將線性自動迴歸模型的結果運用於門檻式自動迴歸模型。由於大部分門檻式自動迴歸模型的動差並無明確之形式;因此,本研究採用蒙地卡羅法及插分法去近似其動差及微分。最後,以第一階門檻式自動迴歸模型去配適美國的國內生產總值資料。
    Threshold autoregressive (TAR) models are popular nonlinear extension of the linear autoregressive (AR) models. Though many have developed the asymptotic theory for parameter estimates in the TAR models, there have been less studies about the finite sample properties. Woodroofe (1989) and Woodroofe and Coad (1997) developed a very weak approximation and used it to construct corrected confidence sets for parameters in an adaptive linear model. This approximation was further developed by Woodroofe and Coad (1999) and Weng and Woodroofe (2006), who derived the corrected confidence sets for parameters in the AR(p) models and other adaptive models. This approach starts with an approximate pivot, and employs the very weak expansions to determine the mean and variance corrections of the pivot. Then, the renormalized pivot is used to form corrected confidence sets. The correction terms have simple forms, and for AR(p) models it involves only the first two moments of the process and the derivatives of these moments. However, for TAR models the analytic forms for moments are known only in some cases when the autoregression function has special structures. The goal of this research is to extend the very weak method to the TAR models to form corrected confidence sets when sample size is moderate. We propose using the difference quotient method and Monte Carlo simulations to approximate the derivatives. Some simulation studies are provided to assess the accuracy of the method. Then, we apply the approach to a real U.S. GDP data.
    Reference: J. Andel and T. Barton. A note on the threshold AR(1) model with cauchy innovations. Journal of Time Series Analysis, 7:1--5, 1986.
    J. Andel, I. Netuka and K. Zvara. On the threshold autoregressive processes. Kybernetika, Vol. 20, No. 2 89--106, 1984.
    P. J. Brockwell and R. A. Davis. Time Series: Theory and Method. Springer, New York, 1991.
    K. S. Chan. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model.
    Annals of Statistics, 21:520--533, 1993.
    K. S. Chan and H. Tong. On estimating thresholds in autoregressive models. Journal of Time Series Analysis, Vol. 7, No. 3, 179--191, 1986.
    K. S. Chan and R. S. Tsay. Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika 85, 413--426, 1998.
    W. S. Chen and C. Lee. Bayesian inference of threshold autoregressive models. Journal of Time Series Analysis, Vol. 16, No. 5, 483--492, 1995.
    B. R. Chen and R. S. Tsay. On the ergodicity of TAR(1) processes. The Annals of Applied Probability, 1:613--634, 1991.
    D. S. Coad and M. B. Woodroofe. Approximate bias calculations for sequentially designed experiments. Sequential Analysis, 17, 1--31, 1998.
    L. Dumbgen. The asymptotic behavior of some nonparametric change point estimators. The Annals of Statistics, 19:1471--1495, 1991.
    J.R. Eisele. The doubly adaptive biased coin design for sequential clinical trials. Journal of Statistical Planning and Inference, 38:249--262, 1994.
    B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7:1--26, 1979.
    W. Enders, B. Falk and P. L. Siklos. A threshold model of real U.S. GDP and the problem of constructing confidence intervals in TAR models. Studies in Nonlinear Dynamics and Econometrics, Vol. 11: No. 3, Article 4, 2007.
    J. Gonzalo and M. Wolf. Subsampling inference in threshold autoregressive models. Journal of Econometrics, Vol. 127, Issue 2, 201:224, 2005.
    P. Hall. The bootstrap and edgeworth expansion. Springer-Verlag, New York, 1992.
    B. E. Hansen. Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics, 1:119--131, 1997.
    T. L. Lai and C. Z. Wei. Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Annals of Statistics, 10:154--166, 1982.
    W. Loges. The stationary marginal distribution of a threshold AR(1) process. Journal of Time Series Analysis, 25:103--125, 2004.
    J. Petrucelli and S. Woolford. A threshold AR(1) model. Journal of Applied Probability, 21:270--286, 1984.
    S. M. Potter. A nonlinear approach to US GNP. Journal of Applied Econometrics, Vol. 10, 109--125, 1995.
    R. S. Tasi. Analysis of Financial Time Series. Wiley Series in Probability and Statistics, 2005.
    T. Terasvirta. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, Vol. 89, No. 425, 208:218, 1994.
    H. Tong. On a threshold model. Pattern Recognition and Signal Processing, pp. 101–141.
    H. Tong. Threshold Models in Non-linear Time Series. Springer-Verlag, New York, 1983.
    H. Tong. Non-linear time series: a dynamical system approach. Oxford University Press, New York, 1990.
    R. C. Weng and M. Woodroofe. Approximate confidence sets for a stationary AR(p) process. Journal of Statistical Planning and Inference, 136:2719--2745, 2006.
    M. Woodroofe. Very weak expansions for sequentially confidence intervals. Annals of Statistics, Vol. 14, No. 3 1049--1067, 1986.
    M. Woodroofe. Very weak expansions for sequentially designed experiments: linear models. Annals of Statistics, 17:1087--1102, 1989.
    M. Woodroofe and D. S. Coad. Corrected confidence sets for sequentially designed experiments. Statistica Sinica, 7:53--74, 1997.
    M. Woodroofe and D. S. Coad. Corrected confidence sets for sequentially designed experiments: Examples. In S. Ghosh, editor. Multivariate Analysis, Design of Experiments, and Survey Sampling, 135--161, New York, 1999. Marcel Dekker, Inc.
    Y. C. Yao. Approximating the distribution of the ML estimate of the change-point in a sequence of independent r.v.`s. Annals of Statistics, 3:1321--1328, 1987.
    Description: 博士
    國立政治大學
    統計研究所
    91354503
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0913545031
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    54503101.pdf92KbAdobe PDF2767View/Open
    54503102.pdf114KbAdobe PDF2832View/Open
    54503103.pdf109KbAdobe PDF2869View/Open
    54503104.pdf78KbAdobe PDF2777View/Open
    54503105.pdf37KbAdobe PDF2769View/Open
    54503106.pdf56KbAdobe PDF2827View/Open
    54503107.pdf117KbAdobe PDF2909View/Open
    54503108.pdf192KbAdobe PDF2890View/Open
    54503109.pdf166KbAdobe PDF2963View/Open
    54503110.pdf161KbAdobe PDF2890View/Open
    54503111.pdf85KbAdobe PDF2787View/Open
    54503112.pdf244KbAdobe PDF2915View/Open
    54503113.pdf2147KbAdobe PDF2980View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback