政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/36927
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 51101608      線上人數 : 916
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36927
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/36927


    題名: 多項分配之分類方法比較與實證研究
    An empirical study of classification on multinomial data
    作者: 高靖翔
    Kao, Ching Hsiang
    貢獻者: 余清祥
    Yue, Jack C.
    高靖翔
    Kao, Ching Hsiang
    關鍵詞: 多項分配

    相似指標
    電腦模擬
    支持向量機
    冪次定理
    Multinomial distribution
    Entropy
    Similarity index
    Computer simulation
    Support vector machine
    Power Law
    Zipf`s Law
    日期: 2008
    上傳時間: 2009-09-18 20:10:38 (UTC+8)
    摘要: 由於電腦科技的快速發展,網際網路(World Wide Web;簡稱WWW)使得資料共享及搜尋更為便利,其中的網路搜尋引擎(Search Engine)更是尋找資料的利器,最知名的「Google」公司就是藉由搜尋引擎而發跡。網頁搜尋多半依賴各網頁的特徵,像是熵(Entropy)即是最為常用的特徵指標,藉由使用者選取「關鍵字詞」,找出與使用者最相似的網頁,換言之,找出相似指標函數最高的網頁。藉由相似指標函數分類也常見於生物學及生態學,但多半會計算兩個社群間的相似性,再判定兩個社群是否相似,與搜尋引擎只計算單一社群的想法不同。
    本文的目標在於研究若資料服從多項分配,特別是似幾何分配的多項分配(許多生態社群都滿足這個假設),單一社群的指標、兩個社群間的相似指標,何者會有較佳的分類正確性。本文考慮的指標包括單一社群的熵及Simpson指標、兩社群間的熵及相似指標(Yue and Clayton, 2005)、支持向量機(Support Vector Machine)、邏輯斯迴歸等方法,透過電腦模擬及交叉驗證(cross-validation)比較方法的優劣。本文發現單一社群熵指標之表現,在本文的模擬研究有不錯的分類結果,甚至普遍優於支持向量機,但單一社群熵指標分類法的結果並不穩定,為該分類方法之主要缺點。
    Since computer science had changed rapidly, the worldwide web made it much easier to share and receive the information. Search engines would be the ones to help us find the target information conveniently. The famous Google was also founded by the search engine. The searching process is always depends on the characteristics of the web pages, for example, entropy is one of the characteristics index. The target web pages could be found by combining the index with the keywords information given by user. Or in other words, it is to find out the web pages which are the most similar to the user’s demands. In biology and ecology, similarity index function is commonly used for classification problems. But in practice, the pairwise instead of single similarity would be obtained to check if two communities are similar or not. It is dislike the thinking of search engines.
    This research is to find out which has better classification result between single index and pairwise index for the data which is multinomial distributed, especially distributed like a geometry distribution. This data assumption is often satisfied in ecology area. The following classification methods would be considered into this research: single index including entropy and Simpson index, pairwise index including pairwise entropy and similarity index (Yue and Clayton, 2005), and also support vector machine and logistic regression. Computer simulations and cross validations would also be considered here. In this research, it is found that the single index, entropy, has good classification result than imagine. Sometime using entropy to classify would even better than using support vector machine with raw data. But using entropy to classify is not very robust, it is the one needed to be improved in future.
    參考文獻: 中文部分
    1. 余清祥 (1998), “統計在紅樓夢的應用”, 政大學報, 76, 303-327.
    英文部分
    1. Agresti, A. (2007), An Introduction to Categorical Data Analysis, 2nd ed., John Wiley & Sons, Inc.
    2. Boser, B. E., Guyon, I.M., Vapnik, V. N. (1992), “A training algorithm for optimal margin classifiers”, Proceedings of the fifth annual workshop on Computational learning theory, 144-152.
    3. Cortes, C. & Vapnik, V. (1995), “Support-vector network”, Machine Learning, 20, 1-25.
    4. Drucker, P. F. (1999), “Beyond the information revolution”, The Atlantic Monthly, 284, 47-59
    5. Meyer, D. (2009), “Support Vector Machines: The Interface to libsvm in package e1071”, Technische Universität Wien, Austria.
    6. Page, L., Brin, S., Motwani, R. and Winograd, T. (1998), “The PageRank citation ranking: Bringing order to the Web”, Standford Digital Library Technologies Project.
    7. Reed, W. J. (2001), “The Pareto, Zipf and other power laws”, Economics Letters 74 (1), 15–19.
    8. Shannon, C. E. (1948), “A mathematical theory of communication”, Bell System Technical Journal, 27, 379-423, 623-656.
    9. Sharma, S (1996), Applied Multivariate Techniques, John Wiley & Sons, Inc.
    10. Simpson, E. H. (1949), “Measurement of diversity”, Nature, 163, 688.
    11. Yue, C. J. and Clayton, M. K. (2005), “A Similarity Measures based on Species Proportions”, Communications in Statistics: Theory and Methods, 34, 2123-2131.
    12. Wikipedia, Web search engine, http://en.wikipedia.org/wiki/Web_search_engine (as of June 15, 2009).
    13. Zipf, G. K. (1935), The Psychobiology of Language: An Introduction to Dynamic Phinology, Houghton-Mifflin.
    14. Zipf, G. K. (1949), Human behavior and the principle of least effort: An introduction to human ecology, Addison-Wesley, Cambridge, MA.
    描述: 碩士
    國立政治大學
    統計研究所
    96354005
    97
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0096354005
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    400501.pdf93KbAdobe PDF2800檢視/開啟
    400502.pdf117KbAdobe PDF2855檢視/開啟
    400503.pdf161KbAdobe PDF21176檢視/開啟
    400504.pdf300KbAdobe PDF2987檢視/開啟
    400505.pdf136KbAdobe PDF2897檢視/開啟
    400506.pdf259KbAdobe PDF21270檢視/開啟
    400507.pdf300KbAdobe PDF21222檢視/開啟
    400508.pdf1959KbAdobe PDF21033檢視/開啟
    400509.pdf1928KbAdobe PDF2991檢視/開啟
    400510.pdf257KbAdobe PDF2947檢視/開啟
    400511.pdf173KbAdobe PDF2943檢視/開啟
    400512.pdf165KbAdobe PDF2892檢視/開啟
    400513.pdf3866KbAdobe PDF2903檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋