English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51601281      Online Users : 806
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36672
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36672


    Title: 利用混合模型估計風險值的探討
    Authors: 阮建豐
    Contributors: 翁久幸
    阮建豐
    Keywords: 風險值
    厚尾
    歷史模擬法
    變異數-共變異數法
    混合常態模型
    準貝式最大概似估計法
    EM演算法
    回溯測試
    前向測試
    高峰
    Value at risk (VaR)
    Fat tail
    Historical simulation method
    Variance-covariance method
    Mixture normal distribution
    Quasi-bayesian MLE
    EM algoritm
    Back test
    Forward test
    Leptokurtosis
    Date: 2001
    Issue Date: 2009-09-18 19:10:31 (UTC+8)
    Abstract: 風險值大多是在假設資產報酬為常態分配下計算而得的,但是這個假設與實際的資產報酬分配不一致,因為很多研究者都發現實際的資產報酬分配都有厚尾的現象,也就是極端事件的發生機率遠比常態假設要來的高,因此利用常態假設來計算風險值對於真實損失的衡量不是很恰當。
    針對這個問題,本論文以歷史模擬法、變異數-共變異數法、混合常態模型來模擬報酬率的分配,並依給定的信賴水準估算出風險值,其中混合常態模型的參數是利用準貝式最大概似估計法及EM演算法來估計;然後利用三種風險值的評量方法:回溯測試、前向測試與二項檢定,來評判三種估算風險值方法的優劣。
    經由實證結果發現:
    1.報酬率分配在左尾臨界機率1%有較明顯厚尾的現象。
    2.利用混合常態分配來模擬報酬率分配會比另外兩種方法更能準確的捕捉到左尾臨界機率1%的厚尾。
    3.混合常態模型的峰態係數值接近於真實報酬率分配的峰態係數值,因此我們可以確認混合常態模型可以捕捉高峰的現象。
    關鍵字:風險值、厚尾、歷史模擬法、變異數-共變異教法、混合常態模型、準貝式最大概似估計法、EM演算法、回溯測試、前向測試、高峰
    Initially, Value at Risk (VaR) is calculated by assuming that the underline asset return is normal distribution, but this assumption sometimes does not consist with the actual distribution of asset return.
    Many researchers have found that the actual distribution of the underline asset return have Fat-Tail, extreme value events, character. So under normal distribution assumption, the VaR value is improper compared with the actual losses.
    The paper discuss three methods. Historical Simulated method - Variance-Covariance method and Mixture Normal .simulating those asset, return and VaR by given proper confidence level. About the Mixture Normal Distribution, we use both EM algorithm and Quasi-Bayesian MLE calculating its parameters. Finally, we use tree VaR testing methods, Back test、Forward tes and Binomial test -----comparing its VaR loss probability
    We find the following results:
    1.Under 1% left-tail critical probability, asset return distribution has significant Fat-tail character.
    2.Using Mixture Normal distribution we can catch more Fat-tail character precisely than the other two methods.
    3.The kurtosis of Mixture Normal is close to the actual kurtosis, this means that the Mixture Normal distribution can catch the Leptokurtosis phenomenon.
    Key words: Value at Risk、VaR、Fat tail、Historical simulation method、 Variance-Covariance method、Mixture Normal distribution、Quasi-Bayesian MLE、EM algorithm、Back test、 Forward test、 Leptokurtosis
    Description: 碩士
    國立政治大學
    統計研究所
    89354004
    90
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G91NCCU2602012
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2220View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback