Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/36377
|
Title: | 即時自動產生人體下半身動作的運動計劃 Real Time Planning for Humanoid Lower Body Motion |
Authors: | 陳培鋒 Pei-Feng Chen |
Contributors: | 李蔡彥 Tsai-Yen Li 陳培鋒 Pei-Feng Chen |
Keywords: | 即時模擬人體走路動作 運動計劃器 反向關節運動 貝茲曲線控制 行進效率 行走步伐節奏 即時操控 |
Date: | 2002 |
Issue Date: | 2009-09-18 18:26:15 (UTC+8) |
Abstract: | 在製作動畫上,模擬人體的運動一直是困難的課題;但在如線上遊戲等急速成長的虛擬環境應用中,人物運動的動畫常是不可或缺的一環。過去在此方面的相關研究雖然為數不少,但大多數的系統皆只適用於某特定的地形或事先給定的腳步落點;能根據地形特徵而自動產生對應之行走運動者並不常見。本論文提議的系統,便是一個能即時模擬人體走路動作的運動計劃器。我們以反向關節運動的方式,分析人體在不平路面上行走時的運動特徵,並以貝茲曲線表示懸浮腿的運動軌跡。透過貝茲曲線控制點的調整,可以讓下半身的肢體避免碰觸到凸起的路面。其次,此系統也包含了腳步計劃的機制,讓虛擬人物能以行進效率為準則,計劃未來數步內保證可行的步伐。再者,我們根據實際測量的資料與觀察,找出行進過程中每個階段在時間分配上的差異,並利用製作動畫的原理,加入緩入與緩出的概念,以調整行走步伐的節奏,使動畫更具真實感。最後,我們將此模擬系統套用於「線上模擬」與「即時操控」兩種不同模式的應用系統,以驗證此系統之即時性與實用性。 Simulating human motion has been an important and challenging topic in computer graphics for many years, especially after the booming of virtual environment applications such as on-line games. Although there has been much research on this topic, most previous systems are only capable of generating a realistic locomotion for a set of given footsteps on a flat ground in an off-line manner. The system we propose in this thesis is a lower-body motion simulator for humanoid capable of planning efficient footsteps and automatically generating collision-free locomotion in real time. First, we observe and analyze the motion characteristics of human walking and use Bézier curves to represent the trajectory of a floating leg during a stride. We use an inverse kinematics approach to compute the corresponding joint angles for a given leg trajectory. By adjusting the control points of the curve, we can change its shape to avoid collisions with the ground. Second, the system also includes a footstep planner that can generate successful and efficient gaits over an uneven terrain with an empirical energy consumption model. Third, according to observation and measured data, we use the “ease-in” and “ease-out” techniques and appropriate timing for each phase of a walking cycle to generate more realistic motions. Finally, we have applied this motion simulator to a virtual environment system with two types of operation modes: on-line simulation and real-time navigation which are verified the efficiency and practicability of such a system. 第一章 導論
1.1 研究動機與目的
1.2 問題描述
1.3 系統特色與論文貢獻
1.4 本論文的章節架構
第二章 相關研究
2.1 背景
2.2 機構學方法
2.3 動力學方法
2.4 歷年相關研究
第三章 系統總覽
3.1 系統流程與架構
3.2 系統之輸入參數
3.3 元件介紹
3.3.1 步伐產生元件
3.3.2 動作生成元件
3.3.3 步伐軌跡調整元件
第四章 步伐的計劃
4.1 腳步落點分析
4.2 腳步計劃器
第五章 動作的生成
5.1 人體下半身運動的觀察
5.2 反向關節運動
5.3 關鍵格的產生
5.3.1 第一關鍵格
5.3.2 第二關鍵格
5.3.3 第三關鍵格
5.4 內插方法
5.4.1 內插第一關鍵格與第二關鍵格
5.4.2 內插第二關鍵格與第三關鍵格
5.4.3 內插第三關鍵格與下一步之第一關鍵格
5.5 避碰方法
5.6 行走步伐節奏
5.7 行走步伐內插分析
5.8 行走於彎曲路徑
第六章 實驗成果
6.1 系統介面
6.2 平地行走實例
6.3 不平路面行走實例
6.3.1 上樓梯與上坡之行走實例
6.3.2 下樓梯與下坡行走實例
6.4 腳步計劃實例
6.5 腳步計劃器之效率
6.6 彎曲路徑行走實例
第七章 虛擬環境中的人體運動計劃
7.1 路徑規劃系統
7.2 即時操控環境
7.3 實作考量
7.3.1 地形剖面圖
7.3.2 腳步計劃器
第八章 結論與未來發展
8.1 結論
8.2 未來發展
參考文獻
附錄A:貝茲曲線 |
Reference: | [1] A. Bruderlin and T. W. Calvert, “Goal-Directed, Dynamic Animation of Human Walking,” Proceedings of ACM SIGGRAPH, 1989. [2] C. Chaisukkosol and P. Chongstitvatana, “Automatic Synthesis of Robot Programs for a Biped Static Walker by Evolutionary Computation,” Proceedings of the Second Asian Symposium on Industrial Automation and Robotics, 2001. [3] S.-K. Chung and J. K. Hahn, “Animation of Human Walking in Virtual Environments,” Proceedings of Computer Animation Conference, 1999. [4] M. G. Choi, J. Lee and S. Y. Shin, “A Probabilistic Approach to Planning Biped Locomotion with Prescribed Motions,” Technical Report, CS-TR-2001-162, Computer Science Department, KAIST, 2000. [5] K. Hase and R. B. Stein, “Turning Strategies During Human Walking,” The American Physiological Society, 1999. [6] J. K. Hodgins, W. L. Wooten, D. C. Brogan and J., F. O’Brien, “Animating Human Athletics,” Proceedings of ACM SIGGRAPH, 1995. [7] V. T. Inman, H. J. Ralston, and F. Todd, “Human Walking,” Williams and Wilkins, Baltimore/London, 1981. [8] H. Ko, “Kinematic and Dynamic techniques for Analyzing, Predicting, and Animating Human Locomotion,” PhD thesis, University of Pennsylvania, 1994. [9] A. D. Kuo, “Energetics of Actively Powered Locomotion Using the Simplest Walking Model,” Journal of Biomechanical Engineering, 2002. [10] H. Lim, Y. Kaneshima and A. Takanishi, “Online Walking Pattern Generation for Biped Humanoid Robot with Trunk,” Proceedings of IEEE International Conference on Robotics and Automation, 2002. [11] T.Y. Li, P.F. Chen and P.Z. Huang, “Motion Planning for Humanoid Walking in a Layered Environment,” Proceedings of IEEE International Conference on Robotics and Automation, 2003. [12] C. K. Liu and Z. Popovic, “Synthesis of Complex Dynamic Character Motion from Simple Animations,” Proceedings of ACM SIGGRAPH, 2002. [13] E. Nichools, “Bipedal Dynamic Walking in Robotics,” Honours Thesis, University of Western Australia, 1998. [14] M. G. Pandy and N. Berme, “A Numerical Method for Simulating the Dynamics of Human Walking,” Journal of Biomechanics, 1988. [15] M. Panne, J. Laszlo, P. Huang and P. Faloutsos, “Towards Agile Animated Characters,” Proceedings of IEEE International Conference on Robotics and Automation, 2000. [16] Ralston HJ., “Energy-Speed Relation and Optimal Speed During Level Walking,” Int Z Angew Physiol, 1958. [17] H. Rijpkema and M. Girard, “Computer Animation of Knowledge- Based Human Grasping,” Proceedings of ACM SIGGRAPH, 1991. [18] J. Rose and J. G. Gamble, “Human Walking,” Williams and Wilkins, 1994. [19] A. J. Stewart and J. F. Cremer, “Animation of 3D Human Locomotion: Climbing stairs and Descending Stairs,” Eurographics Workshop on Animation and Simulation, pp. 152-168, 1992. [20] F. M. Silva and J. A. T. Machado, “Energy Analysis During Biped Walking,” Proceedings of IEEE International Conference on Robotics and Automation, 1999. [21] H. C. Sun and D. N. Metaxas, “Automating gait generation,” Proceedings of ACM SIGGRAPH, 2001. [22] A. Takanishi, H.-O. Lim, M. Tsuda and I. Kato, “Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,” Proceedings of IEEE International Workshop on Intelligent Robots and Systems, 1990. [23] S. Tak, O. Song and H.-S. Ko, “Motion Balance Filtering,” Proceedings of the Eurographics Conference, 2000. [24] K. Tsutsuguchi, S. Shimada and Y. Suenaga, “Human walking animation based on foot reaction force in the three-dimensional virtual world,” The Journal of Visualization and Computer Animation, 2000. [25] Winter DA, “Biomechanics and Motor Control of Human Movement,” New York: Wiley, 1990. [26] A. Witkin and Z. Popovic, “Motion Warping,” Proceedings of ACM SIGGRAPH, 1995. [27] EAI spec., URL:<http://www.web3d.org/WorkingGroups/vrml-eai/>. [28] HANIM (The humanoid animation working group), URL :<http://www.hanim.org>. [29] Humanoid models, URL :< http://www.cis.upenn.edu/~beitler/hanim/>. [30] VRML 97 spec., URL:<http://www.vrml.org>. |
Description: | 碩士 國立政治大學 資訊科學學系 90753009 91 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0090753009 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 1Kb | HTML2 | 434 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|