Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/35873
|
Title: | 神經網路應用於地籍坐標轉換之研究 Cadastral Coordinate Transformation Using Artificial Neural Network |
Authors: | 王奕鈞 |
Contributors: | 林老生 王奕鈞 |
Keywords: | TWD67坐標系統 TWD97坐標系統 神經網路 TWD67 TWD97 artificial neural network |
Date: | 2005 |
Issue Date: | 2009-09-18 16:16:23 (UTC+8) |
Abstract: | 現今台灣地區使用的地籍坐標系統有相當多種,在這當中最廣泛使用的為TWD67與TWD97坐標系統。由於不同時期建置的資料具有不同的地籍坐標系統,因此常需要在兩地籍坐標系統間進行坐標轉換。目前,國內正積極將地籍資料由TWD67坐標系統轉換為TWD97坐標系統。而如何在TWD67與TWD97之間進行坐標轉換,整合不同地籍坐標系統間資料之聯繫與共享,一直是國內學者致力於研究的問題。在廣泛的討論當中,最常使用的方式為利用最小二乘法求解轉換參數。 近幾年來由於神經網路技術快速的發展,提供了我們在進行地籍坐標轉換研究時新的選擇。本研究目的在於嘗試利用神經網路方式進行TWD67與TWD97地籍坐標系統;同時為了提升神經網路的效用,及解決神經網路的黑盒子問題,本研究提出利用神經網路建構網格式地籍坐標轉換模式的方法。為了驗証本研究所提出之坐標轉換方法,利用三個大小不同的實驗區之共同點資料,由不同方式轉換所得的結果顯示,以純粹利用神經網路方式所得轉換結果為佳,而網格式地籍坐標轉換模式所得結果與利用最小二乘法求解結果不相上下。 Currently, there are two cadastral coordinate systems used in Taiwan. They are TWD67 (Taiwan Datum 1967) and TWD97 (Taiwan Datum 1997) cadastral coordinate systems respectively. Frequently it is necessary to transform from one coordinate system to another. One of the most widely used method is Least-Squares with affine transformations.
The artificial neural network (ANN) provides a new technology for cadastral coordinate transformation. The popularity of this methodology is rapidly growing. The greatest advantage of ANN is that it can be used very successfully with a huge quantity of data and free-model estimation that traditional transformation methods cannot be applied.
In this research coordinate transformation between TWD67 and TWD97 with artificial neural network (ANN) and Least-Squares with affine transformations were examined. Besides, in order to overcome the so called ‘‘Black Box Problem’’ of ANN, algorithm of applying artificial neural network to develop regional grid-based cadastral coordinate transformation model was proposed. Three data sets with varied sizes from the Taiwan region are used to test the proposed algorithms. The test results show that the coordinate transformation accuracies using the ANN models are better than those of using other methods, such as, Least-Squares with affine transformations. The proposed algorithms and the detailed test results are presented in this paper. |
Reference: | 中文部分: 1.王文安,2005,「應用不同幾何方法推求區域性大地起伏值之研究-以臺中市為例」,國立中興大學土木工程學系碩士論文:台中。 2.尤瑞哲,1998,「三度空間GPS 坐標和台灣地區二度TM 坐標轉換可行性分析之研究」,NSC 87-2211-E006-036。 3.伍志宗,2003,「製圖區地控點資訊不足之基準轉換研究」,國防大學中正理工學院軍事工程研究所碩士論文:桃園。 4.何維信,2005,「數值地形模型、上課講義第四章」,國立政治大學地政系。 5.林老生,2005,「利用神經網路建立台灣區大地起伏模式之研究」,『中國測量工程學會論文研討會論文集』,第1-16頁。 6.洪慧齡,1999,「土地測量成果坐標整合之研究」,國立成功大學測量工程研究所碩士論文:台南。 7.許皓寧,2003,「臺北市地籍資料TWD67與TWD97坐標轉換之比較研究」,國立中興大學土木工程學系碩士論文:台中。 8.陳立夫,2005,「土地法規」,新學林出版股份有限公司:台北。 9.黃華尉,2001,「TWD97 與TWD67 二度TM 坐標轉換之研究」,國立成功大學測量工程研究所碩士論文:台南。 10.溫豐文,2003,『土地法』,二○○三年九月修訂版。 11.董倩琪,2005,「以最小二乘配置法整合臺北市地籍圖資料至TWD97坐標系統作業方法之研究」,『中華民國地籍測量學會會刊論文集』,第78-100頁。 12.劉正倫、鄭彩堂、董荔偉,2004,「以約制條件實施坐標轉換整合圖解數化成果之研究」,內政部土地測量局93年度自行研究報告:台中。 13.蔡慶賢,2002,「類神經網路在風浪推測上的研究」,國立中興大學土木工程學系碩士論文:台中。 14.鄭彩堂,2002,「以限制條件及附加參數法輔助圖解區土地複丈之研究」,國立中興大學土木工程學系碩士論文:台中。 15.戴翰國、余致義、曾清涼,2002,「利用六參數平面轉換與最小二乘配置進行小區域TWD67 與TWD97 之地籍資料坐標轉換-以臺北市大安通化段為例」,『第五屆GPS 衛星科技研討會』,第66-71頁。 16.蕭榮錦,2003,「土地複丈作業系統改進之研究─以台北市為例」,國立台北大學地政學系研究所碩士論文:台北。 17.蘭雪梅、朱健、黃承明、董德存,2003,『BP網絡的MATLAB實現,微型電腦應用』,19(1):第6-8頁。 18.蘇昭安,2003,『應用倒傳遞類神經網路在颱風波浪預報之研究』,國立臺灣大學工程科學與海洋工程學系碩士論文:台北。 英文部分: 1.Demuth, Howard. and Beale, Mark, 2002, User’s Guide of Neural Network Toolbox For Use with MATLAB, Version 4, The MathWorks. 2.Federal Geographic Data Committee(FGDC),1998, Part 3. National Standard for Spatial Data Accuracy, Geospatial Positioning Accuracy Standards, GDC-STD-007.3-1998, Washington, D.C., Federal Geographic Data Committee, Pp.1~28. 3.Jacek M. Zurada, 1992, Introduction to Artificial Neural Systems, West Publishing Company. 4.Junkins, J.L., Miller, G.W. & Jancaitis, J.R., 1973, A weighting function approach to modeling of irregular surfaces. Jurnal of Geophysical Research, Vol. 78, No. 11,April, 1794-1803. 5.Lin, L.S., 1998, Real-time estimation of ionospheric delay using GPS measurements,UNISURV S-51, Reports from School of Geomatic Engineering, The University of New South Wales, Sydney, NSW, Australia. 6.Naser El-Sheimy, 1999, Digital Terrian Modelling, Department of Geomatics Engineering The University of Calgary, Canada. 7.Paláncz B., Völgyesi L., 2003, High accuracy data representation via sequence of neural networks, Acta Geod.Geoph. Hung., Vol. 38 (3), Pp. 337-343. 8.Paul R.Wolf, Charles D.Ghilani, 1997, Adjustment computations: statics and least squares in suryeying and gis 3rd, John Wiley & Sons, Inc. 9.Pen-Shan Hung , 2005, Coordinate Transformation of the Digitized Graphical Cadastral Maps to TWD97, 2005年國際空間資訊理論與應用研討會論文集, 逢甲大學主辦. 10.Piroska Zaletnyik, 1999, Coordinate Transformation with Neural networks and with Polynominals in Hungary. Geodézia és Kartográfia, Budapest, LI, No. 10. Pp.12-18. (in Hungarian) 11.Rumelhart, D.E., McClelland, J.L., and the PDP Research Group,1986. PARALLEL DISTRIBUTED PROCESSING, Vol. 1, MIT Press, Cambridge, MA. 12.Villiers J., Barnard E., 1992. Back-Propagation Neural Netswith One and Two Hidden Layers. IEEE Transaction On Neural Network, Vol. 4, No. 1, Pp.136-141. 13.Zaletnyik P., Völgyesi L., Paláncz B., 2004, Approach of the Hungarian Geoid Surface with Sequence of Neural Networks, ISPRS2004. 網址部分: 類神經網路簡介 http://www.gct.ntou.edu.tw/Lab/aiwww/neural.html The Mathworks http://www.mathworks.com 沃爾夫勒姆研究公司 http://www.wolfram.com/index.html How many hidden layers should I use? http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-9.html Preconditioning the Network http://www.willamette.edu/~gorr/classes/cs449/precond.html |
Description: | 碩士 國立政治大學 地政研究所 93257006 94 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0093257006 |
Data Type: | thesis |
Appears in Collections: | [地政學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|