English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52044715      Online Users : 594
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/35803


    Title: 有限理性與彈性迷思
    Bounded Rationality and the Elasticity Puzzle
    Authors: 王仁甫
    Wang,Jen Fu
    Contributors: 陳樹衡
    Chen,S.-H
    王仁甫
    Wang,Jen Fu
    Keywords: 跨期替代彈性
    風險趨避係數
    基因演算法
    一般化動差法
    一般化最小平方法
    the elasticity of intertemporal substitution
    RRA
    GMM
    GLS
    Genetic Algorithms
    Date: 2005
    Issue Date: 2009-09-18 16:05:07 (UTC+8)
    Abstract: 在總體經濟學中,跨期替代分析方法佔有相當重要的地位。其中跨期替代彈性(the
    elasticity of intertemporal substitution, EIS)的大小,間接或者直接影響總體經濟中的許多層面,直覺上,例如跨期替代彈性越大,對個人而言,是對當期消費的機會成本提升,使延後消費的意願上升,同時增加個人儲蓄,在正常金融市場情況之下,個人儲蓄金額的增加,將使市場資金的供給量增多,使得企業或個人的投資機會成本降低,經由總體經濟中間接或直接的影響下,則總體經濟成長率應會上升。其中,當消費者效用函數為固定風險趨避係數(constant coefficient of relative risk aversion, CRRA)且具有跨期分割與可加性的特性,加上在傳統經濟學中,假設每個人皆為完全理性的前提下,經由跨期替代分析方法推導後,可以得到相對風險趨避係數(the coefficient of relative risk aversion, RRA)與跨期替代彈性(the elasticity of intertemporal substitution, EIS)恰好是倒數關係。
    <br>在過去相關研究中,Hansen and Singleton (1983)推估出跨期替代彈性值較大且顯著,但Hall (1988)強調,若考慮資料的時間加總問題(time aggregation problem),
    則前者估計出跨期替代彈性在統計上則不再是顯著;Hall亦於結論提出跨期替代彈性為小於或等於0.1,甚至比0小。在經濟意義上,代表股票市場中投資人的相對風險趨避程度(RRA)極大,直覺上,是不合理的現象,這也是著名的彈性迷思(elasticity puzzle)。於是Epstein and Zin (1991)嘗試建議並修正效用函數為不具時間分割性(non-time separable utility)的效用函數,並得到跨期替代彈性(EIS)與相對風險趨避係數(RRA)互為倒數關係,不復存在的結論。這也說明影響彈性迷思(elasticity puzzle)的原因有許多,其中之一,可能為設定不同形式效用函數所造成。
    <br>在傳統經濟模型中,假設完全理性的個人決策行為之下,利用跨期替代方法,可以得到跨期替代彈性(EIS)與相對風險趨避程度(RRA)互為倒數關係後,又得到隱含風險趨避程度為無窮大的推估結論。這也是本研究想要來探究的問題,即是彈性迷思(elasticity puzzle)究竟是假設所造成,或者是因為由個體資料加總成總體資料,所產生的謬誤。
    <br>因此,本研究與其他研究不同之處,在於利用建構時間可分離形式的效用函數(time-separable utility)模型基礎,以遺傳演算(Genetic Algorithms)方法,建構有限理性的人工股票市場進行模擬,其中,模擬方式為設定不同代理人(agent)有不同程度的預測能力,代表其理性程度的差異的表現。
    <br>本研究發現在有限理性異質性個人的人工股票市場下,相對風險趨避程度係數(RRA)與跨期替代彈性(EIS)不為倒數關係,且設定不同代理人不同的預測能力,亦會影響跨期替代彈性(EIS)的推估數值大小。
    Reference: [1] Adriarez, F., N. Carrasquero and C. Rocco (2003),“Numerical
    Solutions to a Stochastic Growth Model Based on the Evolution
    of a Radial Basis Network,” in S.-H. Chen and P. P. Wang (ed.),
    Computational Intelligence in Economics and Finance, Springer,
    pp. 348-357.
    [2] Adriaens, H., B. Donkers and B. Melenberg (2004), “Extending
    the CAPM model,” presented at the 10th International Conference
    of the Society for Computational Economics: Computing in
    Economics and Finance, University of Amsterdam, Amsterdam,
    the Netherland.
    [3] Arrow, K.J. (1971),Essays in the Theory of Risk Bearing,
    Chicago:Markham.
    [4] Attanasio, O. P. and M. Browning (1995), “Consumption over
    the Life Cycle and over the Business Cycle,” American Economic
    Review, Vol. 85, No. 5, pp. 1118-1137.
    [5] Attanasio, O. P. and G. Weber (1989), “Intertemporal Substitution,
    Risk Aversion and the Euler Equation for Consumption,”
    Economic Journal, Vol. 99, pp. 59-73.
    [6] Attanasio, O. P., J. Banks and S. Tanner (2002), “Assets Holding
    and Consumption Volatility,”Journal of Political Economy, Vol.
    110, pp. 771-792.
    [7] Barro,R.J. and X. Sala-I-Martin (1995) Economic Growth, New
    York:McGraw Hill Press.
    [8] Blume, L. and D. Easley (1992), “Evolution and Market Behavior,”
    Journal of Economic Theory, Vol. 58, pp. 9-40.
    [9] Blume, L. and D. Easley (2004), “If You’re So Smart, Why Aren’t
    You Rich? Belief Selection in Complete and Incomplete Markets,”
    working paper.
    [10] Blundell, R., M. Browning and C. Meghir (1994), “Consumer Demand
    and the Life-Cycle Allocation of Household Expenditure,”
    The Review of Economic Studies, Vol. 61, No. 1, pp. 57-80.
    [11] B.ohm, V. and J. Wenzelburger (2004), “On the Performance
    of Efficient Portfolio,” presented at The 10th International Conference
    of Computing in Economics and Finance, University of
    Amsterdam, Amsterdam, the Netherland.
    [12] Breeden, D. T. (1979), “An Intertemporal Asset Pricing Model
    with Stochastic Consumption and Investment Opportunities,”
    Journal of Financial Economics, Vol. 7, pp. 265-296.
    [13] Brock, W. A. and C. H. Hommes (1998), “Heterogeneous beliefs
    and routes to chaos in a simple asset pricing model,” Journal of
    Economic Dynamics and Control, Vol. 22, pp. 1235-1274.
    [14] Bullard, J. and J. Duffy (1999), “Using Genetic Algorithms to
    Model the Evolution of Heterogenous Beliefs,” Computational
    Economics Vol. 13, No. 1, pp. 41-60.
    [15] Caldarelli, G., M. Piccioni and E. Sciubba (2002), “A Numerical
    Study on the Evolution of Portfolio Rules,” in S.-H. Chen (ed.),
    Genetic Algorithms and Genetic Programming in Computational
    Finance, Kluwer, pp. 379-395.
    [16] Campbell, J. Y. (2003), “Consumption-Based Asset Pricing,”
    (chapter 13, pp. 801-885), in Constantinides, G. M., Harris, M.
    and Stulz, R. M. (Eds.), Handbook of the Economics of Finance,
    Vol. 1B (Amsterdam: Elsevier, 2003)
    [17] Campbell, J.Y. and J.H. Cochrane (1999), “By force of habit: A
    consumption-based explanation of aggregate stock market behavior,”
    Journal of Political Economy, Vol. 107,pp. 205-251.
    [18] Campbell, J. Y. and N. G. Mankiw (1989), “Consumption, Income,
    and Interest Rates: Reinterpreting the time series evidence,”
    NBER working paper n. 2924.
    [19] Carroll, C. D. (1997), “Buffer-Stock Saving and the Life Cycle/
    Permanent Income Hypothesis,”Quarterly Journal of Economics,
    Vol. 112, pp. 1-55.
    [20] Chen, S.-H. and C.-H. Yeh (2001), “Evolving Traders and the
    Business School with Genetic Programming: A New Architecture
    of the Agent-Based Artificial Stock Market,” Journal of Economic
    Dynamics and Control, Vol. 25, pp. 363-393.
    [21] Chen, S.-H. and C.-H. Yeh (2002), “On the Emergent Properties
    of Artificial Stock Markets,”Journal of Economic Behavior and
    Organization, Vol. 49, pp. 217-229.
    [22] Chen, S.-H. and C.-C. Liao (2003), “Behavioral Finance and
    Agent-Based Computational Finance: Toward an Integrating
    Framework,” in K. Chen et al. (eds.), Proceedings of 7th Information
    Sciences, September 26-30, 2003, Cary, North Carolina,
    U.S.A., pp. 1235-1238.
    [23] Chen, S.-H. and Y.-C. Huang (2004), “Risk Preference, Forecasting
    Accuracy and Survival Dynamics: Simulations Based on a
    Multi-Asset Agent-Based Artificial Stock Market,” submitted to
    Journal of Economic Behavior and Organization.
    [24] Chen, S.-H. and C.-C. Liao (2004),“Agent-Based Computational
    Modeling of the Stock Price-Volume Relation,” Information Sciences,
    forthcoming.
    [25] Chiarella, C. and X. He (2002), “Heterogeneous Beliefs, Risk and
    Learning in a Simple Asset Pricing Model,” Computational Economics,
    Vol. 19, No. 1, pp. 95-132.
    [26] Chiarella, C. and X. He (2003a), “Dynamics of beliefs and learning
    under aL-processes-the heterogeneous case,” Journal of Economic
    Dynamics and Control, Vol. 27, No. 3, pp. 503-531.
    [27] Chiarella, C. and X. He (2003b), “Heterogeneous Beliefs, Risk
    and Learning in a SimpleAsset-Pricing Model with a Market
    Maker,” Macroeconomic Dynamics, Vol. 7, No. 4, pp. 503- 536.
    [28] Donald J. M. and J. Meyerb (2005), “Risk preferences in multiperiod
    consumption models, the equity premium puzzle, and
    habit formation utility,” Journal of Monetary Economics Vol. 52,
    pp. 1497-1515.
    [29] Epstein, L. G. and S. E. Zin (1991), “Substitution, risk aversion,
    and the temporal behaviorof consumption and asset returns: an
    empirical analysis,” Journal of Political Economy, Vol.99, pp. 263-
    286.
    [30] Evans G.W. and S. Honkapohja (2001), Learning and Expectations
    in Macroeconomics, Series on Frontier of Economic Research
    (series editors: Kreps, D. and Sargent, T. J.), Princeton University
    Press.
    [31] Fama, E. (1998),“Market efficiency,long run returns and behavioural
    finance,”Journal of Financial Economics,Vol. 49,pp.
    283-306.
    [32] Ganuersdorfer, A. (2000), “Endogenous fluctuations in a simple
    asset pricing model with heterogeneous agents,” Journal of Economic
    Dynamics and Control, Vol. 24, pp. 799-831.
    [33] Grossman, S. J. and J. Stiglitz (1980), “On the impossibility of
    informationally efficiency markets,” American Economic Review,
    Vol. 70, pp. 393-408.
    [34] Guvenen M. F. (2002), “Reconciling Conflicting Evidence on the
    Elasticity of Intertemporal Substitution: A Macroeconomic Perspective,”
    Working Paper n. 491.
    [35] Hall R. E. (1988), “Intertemporal substitution in consumption,”
    Journal of Political Economy,Vol. 96, pp. 339-357.
    [36] Hansen, L. P. and K .J. Singleton (1982), “Generalized instrumental
    variables estimation of nonlinear rational expectations
    models,” Econometrica, Vol. 50, pp. 1269-1286.
    [37] Hansen, L. P. and K .J. Singleton (1983), “Stochastic Consumption,
    Risk Aversion, and the Temporal Behavior of Asset Returns,”
    The Journal of Political Economy, Vol. 91. No. 2, pp.
    249-265.
    [38] He, X. and C. Chiarella (2001), “Asset Price and Wealth Dynamics
    Under Heterogeneous Expectations,” Quantitative Finance,
    Vol. 1, No. 5, pp. 509-526.
    [39] Holland, J. and J. Miller (1991), “Artificial Adaptive Agents in
    Economic Theory,” American Economic Review, Vol. 81, No. 2,
    pp. 365-370.
    [40] Jones, L. E., R. Manuelli and E. Stachetti (1999), “Technology
    (and Policy) Shocks in Models of Endogeneous Growth,”Working
    paper No. 7063, National Bureau of Economic Research.
    [41] King, R. G. and S. T. Rebelo (1990), “Public Policy and Economic
    Growth: Developing Neoclassical Implications,” Journal
    of Political Economy, Vol. 98, No. 5, pp. S127-S150.
    [42] Kirman A. (1992), “Whom or What Does the Representative Individual
    Represent?”, Journal of Economic Perspectives, Vol. 6,
    No. 2, pp. 117-136.
    [43] Laibson, D., A. Repetto and J. Tobacman (1998), “Self-Control
    and Saving for Retirement,” Brooking Papers on Economic Activity,
    pp. 91-172.
    [44] LeBaron, B. (2000), “Agent-Based Computational Finance: Suggested
    Readings and Early Research,” Journal of Economic Dynamics
    and Control, Vol. 24, No. 5-7, pp. 679-702.
    [45] LeBaron, B. (2001), “Evolution and Time Horizons in an Agent
    Based Stock Market,”Macroeconomic Dynamics, Vol. 5, pp. 225-
    254.
    [46] LeBaron, B., W. B. Arthur, and R. Palmer (1999), “Time Series
    Properties of an Artificial Stock Market,” Journal of Economic
    Dynamics and Control, Vol. 23, pp. 1487-1516.
    [47] Lux, T. and M. Marchesi (2000), “Volatility clustering in financial
    markets: A microsimulation of interacting agents,” International
    Journal of Theoretical and Applied Finance, Vol. 3,pp. 675-702.
    [48] Markowitz H. (1952), “Portfolio Selection,” Journal of Finance,
    Vol. 7, pp. 77-91.
    [49] Neely, C. J., A. Roy and C. H. Whiteman (2001), “Risk aversion
    versus intertemporal substitution: a case study of identification
    failure in the intertemporal consumption capital asset pricing
    model,” Journal of Business and Economic Statistics, Vol. 19, pp.
    395-403.
    [50] Palmer, R. G., W. B. Arthur, J. H. Holland, B. LeBaron and P.
    Tayler (1994), “Artificial Economic Life: A Simple Model of a
    Stockmarket,” Physica D, Vol. 75, pp. 264-274.
    [51] Patterson K. D. and B. Pesaran (1992), “The Intertemporal Elasticity
    of Substitution in Consumption in the U.S. and in the
    U.K.,” Review of Economics and Statistics, Vol. 74, No.4, pp.
    573-584.
    [52] Pratt,J.,“Risk Aversion in the Small and the
    Large”,Econometrica,32(1964):122-136
    [53] Sandroni, A. (2000), “Do Markets Favor Agents Able to Make
    Accurate Predictions?” Econometrica,Vol. 68, No. 6, pp. 1303-
    1341.
    [54] Sciubba, E. (1999): “The Evolution of Portfolio Rules and the
    Capital Asset Pricing Model,”DAE Working Paper n. 9909, University
    of Cambridge.
    [55] Smith D. C. (1999), “Finite sample properties of tests of the
    Epstein-Zin asset pricing model,”Journal of Econometrics, Vol.
    93, pp. 113-148.
    [56] Summers L. H. (1981), “Tax Policy, the Rate of Return, and
    Savings,” Manuscript, National Bureau of Economic Research,
    No. 995.
    [57] Tesfatsion, L. (2001), “Introduction to the Special Issue on Agent-
    Based Computational Economics,” Journal of Economic Dynamics
    and Control, Vol. 25, pp. 281-293.
    [58] Tobin J. (1958), “Liquidity Preference as Behavior Towards
    Risk,” Review of Economic Studies, Vol. 25, pp. 65-86.
    [59] Vissing-Jorgensen, A. (2002), “Limited Asset Market Participation
    and the Elasticity of Intertemporal Substitution,” Journal of
    Political Economy, Vol. 110, pp. 825-853.
    [60] Vissing-Jorgensen, A., and O. Attanasio (2003), “Stock-Market
    Participation, Intertemporal Substitution, and Risk Aversion,” ,
    American Economic Review, Vol. 93, No. 2, pp. 383-391.
    [61] Weil, P. (1989), “The equity premium puzzle and the risk-free
    rate puzzle,” Journal of Monetary Economics, Vol. 24, pp. 401-
    421.
    [62] Westerhoff, F. (2003), “Heterogeneous Traders and the Tobin
    Tax,” Journal of Evolutionary Economics, Vol. 13, pp. 53-70.
    Description: 碩士
    國立政治大學
    經濟研究所
    92258011
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0922580111
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    58011101.pdf46KbAdobe PDF2828View/Open
    58011102.pdf108KbAdobe PDF2826View/Open
    58011103.pdf166KbAdobe PDF21173View/Open
    58011104.pdf151KbAdobe PDF2785View/Open
    58011105.pdf257KbAdobe PDF21426View/Open
    58011106.pdf538KbAdobe PDF21126View/Open
    58011107.pdf459KbAdobe PDF2793View/Open
    58011108.pdf687KbAdobe PDF2996View/Open
    58011109.pdf233KbAdobe PDF2807View/Open
    58011110.pdf238KbAdobe PDF2742View/Open
    58011111.pdf37KbAdobe PDF2767View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback