Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/35777
|
Title: | 財務報酬波動之預測:靴帶抽樣方法與應用 Volatility Predictions: the Bootstrap Approach and its Applications |
Authors: | 張愉佳 Chang,Yu Chia |
Contributors: | 郭炳伸 Kuo,Biing Shen 張愉佳 Chang,Yu Chia |
Keywords: | 波動度 靴帶抽樣 GARCH模型 台灣股票市場 Volatility Bootstrap GARCH Taiwan Stock Market |
Date: | 2006 |
Issue Date: | 2009-09-18 15:59:49 (UTC+8) |
Abstract: | 金融資產報酬的波動一直都是財務市場熱衷研究的主題, 由於真正報酬的波動無法確知, 造成無法判斷何者為衡量報酬波動最佳的模型, 進而導致預測未來報酬的風險增加。因此, 本文利用靴帶抽樣法(Bootstrap)反覆抽樣的估計方式, 建立報酬與報酬波動的預測區間來衡量由估計模型參數產生的不確定性, 希望能藉此更瞭解資產報酬的變化以降低投資風險。鑒於目前衡量報酬波動的模型眾多, 文中將採用文獻上普遍最能掌握金融資產報酬波動現象的GARCH模型, 作為衡量報酬波動的方法, 再以靴帶抽樣方法估計其報酬與報酬波動的預測區間, 透過有限樣本的模擬將估計模型參數不確定性的靴帶抽樣方法與其他方法比較, 證明靴帶抽樣法最能適當的捕捉報酬波動真實的情況。最後, 由台灣上市股票市場中選取四支不同類股的各股以日報酬進行實證研究, 結果顯示各股的日報酬都具有波動變異的現象, 進一步估計樣本外不同範圍的波動預測區間, 發現利用估計模型參數不確定性的靴帶抽樣方法可以適當地涵蓋波動的變化。 |
Reference: | Andersen, T. G. (2000), “Some Reflections on Analysis of High-Frequency Data,” Journal of Business & Economic Statistics, 18, 146–153. Andersen, T. G. and Bollerslev, T. (1998), “Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts,” International Economics Review, 39, 885–905. Andersen, T. G., Bollerslev, T., Christoffersen, P. F. and Diebold F. X. (2006), “Volatility and Correlation Forecasting,” Handbook of Economic Forecasting, Volume 1, Chapter 15, 777–878. Andersen, T. G., Bollerslev, T., Diebold, F. X. and Ebens H. (2001), “The Distribution of Stock Return Volatility,” Journal of Financial Economics, 61, 43–76. Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys P. (2001), “The Distribution of Exchange Rate Volatility,” Journal of the American Statistical Association, 96, 42–55. Andersen, T. G., Bollerslev, T., Diebold F. X. and Labys P. (2003), “Modeling and Forecasting Realized Volatility,” Econometrica, 71, 579–625. Baillie, R. T., Bollerslev, T. (1992), “Prediction in Dynamic Models with Time Dependent Conditional Variances,” Journal of Econometrics, 52, 91–113. Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307–327. Bollerslev, T. (1987), “A Conditionally Heteroskedastic Time Series Models for Speculative Prices and Rates of Return,” Review of Economics and Statistics, 72, 498–505. Bollerslev, T. (2001), “Financial Econometrics: Past Development and Future Challenges,” Journal of Econometrics, 100, 41–51. Bollerslev, T., Chou, R. Y. and Kroner, K. F. (1992), “ARCH Modeling in Finance: A Selective Review of the Theory and Empirical Evidence,” Journal of Econometrics, 52, 5–59. Bollerslev, T. and Wooldridge, J.M. (1992), “Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time Varying Covariances,” Econometric Reviews, 11, 143–172. Cao, R., Febrero-Brande, M., Gonz´alez-Manteiga, W., Prada-S´anchez, J. M. and Garc´ıa-Jurado, I. (1997), “Saving Computer Time in Constructing Consistent Bootstrap Prediction Intervals for Autoregressive Processes,” Communications in Statistics, Part B- Simulation and Computation, 26, 961–978. Engle, R. F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, 50,987–1008. Engle, R. F. and Patton, A. J. (2001), “What Good is a Volatility Model?” Quantitative Finance, 1, 237–245. Granger, C. W. J. and Poon, Ser-Huang (2003), “Forecasting Volatility in Financial Markets: A Review,” Journal of Economic Literature, 41, 478–539. Miguel, J.A. and Olave, P. (1999), “Bootstrapping Forecast Intervals in ARCH models,” Test, 8, 345–364. Nelson, D. B. (1990), “Stationary and Persistence in the GARCH (1, 1) Model,” Econometric Theory, 6, 318–334. Nelson, D.B. (1992), “Filtering and Forecasting with Misspecified ARCH Models I: getting the right variance with the wrong model,” Journal of Econometrics, 52, 61–90. Pascual, L., Romo, J. and Ruiz, E. (2001), “Effects of Parameter Estimation on Prediction Densities: A Bootstrap Approach,” International Journal of Forecasting, 17, 83–103. Pascual, L., Romo, J. and Ruiz, E. (2004), “Bootstrap Predictive Inference for ARIMA Processes,” Journal of Time Series Analysis, 25, 449–465. Pascual, L., Romo, J. and Ruiz, E. (2006), “Bootstrap Prediction for Returns and Volatilities in GARCH Models,” Computational Statistics & Data Analysis, 50, 2293–2312. Reeves, J. J. (2005), “Bootstrap Prediction Intervals for ARCH Models,” International Journal of Forecasting, 21, 237–248. Thombs, L. A. and Schucany, W. R. (1990), “Bootstrap Prediction Intervals for Autoregression,” Journal of the American Statistical Association, 85, 486–492. |
Description: | 碩士 國立政治大學 經濟研究所 94258035 95 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0094258035 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|