Reference: | 1. Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 177-181. 2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327. 3. Brooks, S. P. (1998). Markov chain Monte Carlo method and its application. The Statistician. 47, 69-100. 4. Casella, G., George, E.I., (1992). Explaining the Gibbs sampler. The American Statistician 46,167-174. 5. Cowles, M. and Carlin, B. (1996). “Markov chain Monte Carlo convergence diagnostics: A comparative study,” J. Amer. Statist. Assoc., vol. 91, pp.883–904. 6. Danielsson, J. (1994). Stochastic volatility in asset prices: Estimation with simulated maximum likelihood. Journal of Econometrics 64, 375-400. 7. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom ination. Econometrica 50, 987-1007. 8. Fridman, M. and L. Harris (1998). A maximum likelihood approach for non-Gaussian stochastic volatility models. Journal of Business and Economic Statistics 16, 284-291. 9. Gallant, A.R., Hsieh, D., Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81, 1, 159–192. 10. Gelfand, A.E., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409. 11. Gelfand, A.E. (1997). Gibbs Sampling, In: Encyclopedia of Statistical Sciences (update), Eds. J. Kotz, C. Read, D. Banks, J. Wiley and Sons, New York, 283-291. 12. Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511. 13. Geman, S., and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. 14. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4, eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith. Oxford: Oxford University Press. 15. Geweke, J., (1993). Bayesian treatment of the independent student-t linear model. Journal of Applied Econometrics 8, S19–S40. 16. Geweke, J. (1994). Comment on Bayesian analysis of stochastic volatility. Journal of Business and Economics Statistics 12 (4), 371–417. 17. Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7,473--483. 18. Gilks, W. R. (1992). Derivative-free Adaptive Rejection Sampling for Gibbs Sampling. Bayesian Statistics 4, (eds. Bernardo, J., Berger, J., Dawid, A. P., and Smith, A. F. M.)Oxford University Press, 641-649. 19. Gilks, W. R., P. Wild (1993), Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, Vol. 41, Issue 2, 337-348. 20. Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London. 21. Glosten, L., R. Jagannathan, and D. Runkle (1993). On the relation between the Expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-1801. 22. Harvey, A. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, New York. 23. Harvey, A.C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. Review of Economic Studies 61, 247-264. 24. Harvey, A.C. and N. Shephard (1996), Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns. Journal of Business and Economic Statistics, 14, 429-434. 25. Heidelberger, P., and P. D. Welch. (1983). Simulation run length control in the presence of an initial transient.Operations Research 31, 6, 1109–1144. 26. Hogg, R. V. and A. T. Craig (1995). Introduction to Mathematical Statistics, 5th edition. Prentice-Hall. 27. Jacquier, E, N.G. Polson, and P.E. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics 12, 371-389. 28. Jacquier, E, N.G. Polson, and P.E. Rossi (2003). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Working paper. 29. Kim S., Shephard N., and Chib S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 65, 361-393. 30. Melino, A. and S.M. Turnbull (1990). Pricing foreign currency options with stochastic volatility.Journal of Econometrics 45, 239-265. 31. Meyer, R., and J.Yu (2000). BUGS for a Bayesian analysis of stochastic volatility models. The Econometrics Journal, 3(2), 198-215. 32. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Dept. of Computer Science, University Toronto, 1993. 33. Neal R.M. (1997). Markov chain Monte Carlo methods based on "slicing` the density function. Technical Report No. 9722. Department of Statistics, University of Toronto. 34. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59: 347-370. 35. Robert, C. P. and G. Casella (1999). Monte Carlo statistical methods. Springer, New York. 36. Ross, S. M. (2000). Introduction to probability models, 7th ed. Harcourt Academic Press. 37. Shephard, N. and M.K. Pitt (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653-667. 38. Tauchen, G., Pitts M. (1983). The price variability-volume relationship on speculative markets. Econometrica 51, 485-505. 39. Taylor, S.J. (1982). Financial returns modelled by the product of two stochastic processes | a study of the daily sugar prices 1961-75. In Anderson, O.D., Editor, Time Series Analysis: Theory and Practice, 1, 203-226. North-Holland, Amsterdam. 40. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics, 22, 1701--1762. 41. Tsay, R. S. (2002). Analysis of Financial Time Series. A Wiley Interscience Publication. 42. Yu, J., Yang, Z., (2003). A class of nonlinear stochastic volatility models. Working paper. |