English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52041227      Online Users : 532
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/35729


    Title: 用馬可夫鏈蒙地卡羅法估計隨機波動模型:台灣匯率市場的實證研究
    Authors: 賴耀君
    Lai,Simon
    Contributors: 毛維凌
    賴耀君
    Lai,Simon
    Keywords: 隨機波動模型
    馬可夫鏈蒙地卡羅法
    貝氏估計
    適應性拒絕抽樣法
    槓桿效果
    厚尾分配
    Gibbs sampler
    scale mixture
    Metropolis-Hastings
    (c) Geweke convergence diagnostic
    Date: 2002
    Issue Date: 2009-09-18 15:52:30 (UTC+8)
    Abstract: 針對金融時序資料變異數不齊一的性質,隨機波動模型除了提供於ARCH族外的另一選擇;且由於其設定隱含波動本身亦為一個隨機波動函數,藉由設定隨時間改變且自我相關的條件變異數,使得隨機波動模型較ARCH族來得有彈性且符合實際。傳統上處理隨機波動模型的參數估計往往需要面對到複雜的多維積分,此問題可藉由貝氏分析裡的馬可夫鏈蒙地卡羅法解決。本文主要的探討標的,即在於利用馬可夫鏈蒙地卡羅法估計美元/新台幣匯率隨機波動模型參數。除原始模型之外,模型的擴充分為三部分:其一為隱含波動的二階自我回歸模型;其二則為藉由基本模型的修改,檢測匯率市場上的槓桿效果;最後,我們嘗試藉由加入scale mixture的方式以驗證金融時序資料中常見的厚尾分配。
    Reference: 1. Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 177-181.
    2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.
    3. Brooks, S. P. (1998). Markov chain Monte Carlo method and its application. The Statistician. 47, 69-100.
    4. Casella, G., George, E.I., (1992). Explaining the Gibbs sampler. The American Statistician 46,167-174.
    5. Cowles, M. and Carlin, B. (1996). “Markov chain Monte Carlo convergence diagnostics: A comparative study,” J. Amer. Statist. Assoc., vol. 91, pp.883–904.
    6. Danielsson, J. (1994). Stochastic volatility in asset prices: Estimation with simulated maximum likelihood. Journal of Econometrics 64, 375-400.
    7. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom ination. Econometrica 50, 987-1007.
    8. Fridman, M. and L. Harris (1998). A maximum likelihood approach for non-Gaussian stochastic volatility models. Journal of Business and Economic Statistics 16, 284-291.
    9. Gallant, A.R., Hsieh, D., Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81, 1, 159–192.
    10. Gelfand, A.E., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409.
    11. Gelfand, A.E. (1997). Gibbs Sampling, In: Encyclopedia of Statistical Sciences (update), Eds. J. Kotz, C. Read, D. Banks, J. Wiley and Sons, New York, 283-291.
    12. Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.
    13. Geman, S., and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
    14. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4, eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith. Oxford: Oxford University Press.
    15. Geweke, J., (1993). Bayesian treatment of the independent student-t linear model. Journal of Applied Econometrics 8, S19–S40.
    16. Geweke, J. (1994). Comment on Bayesian analysis of stochastic volatility. Journal of Business and Economics Statistics 12 (4), 371–417.
    17. Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7,473--483.
    18. Gilks, W. R. (1992). Derivative-free Adaptive Rejection Sampling for Gibbs Sampling. Bayesian Statistics 4, (eds. Bernardo, J., Berger, J., Dawid, A. P., and Smith, A. F. M.)Oxford University Press, 641-649.
    19. Gilks, W. R., P. Wild (1993), Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, Vol. 41, Issue 2, 337-348.
    20. Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
    21. Glosten, L., R. Jagannathan, and D. Runkle (1993). On the relation between the Expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-1801.
    22. Harvey, A. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, New York.
    23. Harvey, A.C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. Review of Economic Studies 61, 247-264.
    24. Harvey, A.C. and N. Shephard (1996), Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns. Journal of Business and Economic Statistics, 14, 429-434.
    25. Heidelberger, P., and P. D. Welch. (1983). Simulation run length control in the presence of an initial transient.Operations Research 31, 6, 1109–1144.
    26. Hogg, R. V. and A. T. Craig (1995). Introduction to Mathematical Statistics, 5th edition. Prentice-Hall.
    27. Jacquier, E, N.G. Polson, and P.E. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics 12, 371-389.
    28. Jacquier, E, N.G. Polson, and P.E. Rossi (2003). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Working paper.
    29. Kim S., Shephard N., and Chib S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 65, 361-393.
    30. Melino, A. and S.M. Turnbull (1990). Pricing foreign currency options with stochastic volatility.Journal of Econometrics 45, 239-265.
    31. Meyer, R., and J.Yu (2000). BUGS for a Bayesian analysis of stochastic volatility models. The Econometrics Journal, 3(2), 198-215.
    32. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Dept. of Computer Science, University Toronto, 1993.
    33. Neal R.M. (1997). Markov chain Monte Carlo methods based on "slicing` the density function. Technical Report No. 9722. Department of Statistics, University of Toronto.
    34. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59: 347-370.
    35. Robert, C. P. and G. Casella (1999). Monte Carlo statistical methods. Springer, New York.
    36. Ross, S. M. (2000). Introduction to probability models, 7th ed. Harcourt Academic Press.
    37. Shephard, N. and M.K. Pitt (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653-667.
    38. Tauchen, G., Pitts M. (1983). The price variability-volume relationship on speculative markets. Econometrica 51, 485-505.
    39. Taylor, S.J. (1982). Financial returns modelled by the product of two stochastic processes | a study of the daily sugar prices 1961-75. In Anderson, O.D., Editor, Time Series Analysis: Theory and Practice, 1, 203-226. North-Holland, Amsterdam.
    40. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics, 22, 1701--1762.
    41. Tsay, R. S. (2002). Analysis of Financial Time Series. A Wiley Interscience Publication.
    42. Yu, J., Yang, Z., (2003). A class of nonlinear stochastic volatility models. Working paper.
    Description: 碩士
    國立政治大學
    經濟研究所
    87258020
    91
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0087258020
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    25802001.pdf46KbAdobe PDF2830View/Open
    25802002.pdf69KbAdobe PDF2920View/Open
    25802003.pdf64KbAdobe PDF2714View/Open
    25802004.pdf58KbAdobe PDF2822View/Open
    25802005.pdf88KbAdobe PDF21758View/Open
    25802006.pdf246KbAdobe PDF22584View/Open
    25802007.pdf130KbAdobe PDF21011View/Open
    25802008.pdf1296KbAdobe PDF21201View/Open
    25802009.pdf103KbAdobe PDF21032View/Open
    25802010.pdf45KbAdobe PDF2766View/Open
    25802011.pdf43KbAdobe PDF2692View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback