English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51152383      Online Users : 839
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/35272
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/35272


    Title: 利用WordNet建立證券領域的語意結構
    Authors: 游舒帆
    Yu,Shu Fan
    Contributors: 劉文卿
    Liou,Wen Qing
    游舒帆
    Yu,Shu Fan
    Keywords: 相似性
    語意距離
    Similarity
    Semantic distance
    WordNet
    Date: 2004
    Issue Date: 2009-09-18 14:36:22 (UTC+8)
    Abstract: 本研究主要在探討普林斯頓大學所開發出來的WordNet線上辭典是否適合用在語意結構(Semantic Structure)的表達上,在整個研究中,我們會先將重點放在WordNet架構的討論,接著研究關於WordNet在建立語意結構上的文獻,以在研究前先取得過去研究的狀況,並針對缺點提出改進方案,最後則進行模式的驗證與修改,期望能得出一個較具代表性且完整的WordNet語意結構。
    本研究採用Jarmasz, Szpakowicz(2001)的語意距離計算模式併Resnik(1995)的相似度(similarity)計算模式,透過這兩個模式來計算出詞彙的距離,並以此距離來辨別語意的關係,最後透過117道證券考題來實證這個架構的正確性與完整性,並針對不足之處作補強修改,以達到較佳的結果。
    本研究的主要限制為下列幾項:
    一、無法全盤的將證券業的所有的詞彙及其關係一次含括進來
    二、測試的題目無法完整代表所有的問題可能性
    三、由於最後結果並非實際架構與修改WordNet系統,僅僅是採用相似度
    計算演算法算出結果,因此與實際機上測試難免會有所差距。
    四、並沒有針對WordNet中所有的關係都做定義,僅只挑選較具代表性的
    幾個詞彙關係做定義,在細部上可能會有所影響。
    This paper is mainly focusing on does the Princeton WordNet fit the Semantic Structure. In this research, we’ll discuss the structure of WordNet, then the reference of WordNet in Semantic Structure. Before we get start, we may collect all the passed data, and study the data more detail. Then we can know the situation and result of passed reseach, so we can modify the model of pass. Finally, we hope we can get a more completed WordNet semantic structure.
    This paper uses the Jarmasz, Szpakowicz’s (2001) semantic distance and Resnik’s Similarity calculative model. Through
    this two models to calculating the distance between two words, and calculating the similarity.
    We collect 117 stock exam questions to verify the correctiveness and the completeness of this structure. And to complement the weakness, so we can have a more strong result.
    This research has three constraints:
    1.We can’t collect all words of stock domain
    2.The 117 questions can’t explain all probability of query
    3.We just run an algorithm to calculate the similarity, not
    real testing on WordNet system, so it may be some bias.
    4.Only identifying some chief words relationship, so it can not cover whole relations.
    Reference: 中文參考文獻
    [1]黃居仁、張如瑩、蔡柏生。「資訊與社會叢書系列之三:語言文學與資訊科技─語意網時代的網路華語教學:兼介中英雙語知識本體與領域檢索介面」, 民國93年, 頁443-467。
    [2]美國資訊科學學會臺北分會, “索引典理論與實務”,民國83年,頁8。
    [3]陳攸華,「圖書資訊學研究」,文華出版社,民國84年,頁34-35。
    [4]黃慕萱,「資訊檢索」,台灣學生書局,民國85年,頁209。
    [5]蔡明月,「線上資訊檢索:理論與應用」,初版,台灣學生書局,民國80年,頁177。
    [6]呂江麟,「組織記憶─概念性語意資訊檢索」”,國立臺灣大學資訊管理研究所碩士論文,民國91年。
    [7]黃惠株,“淺談索引典”,佛教圖書館館訊 第五期,民國85年,頁2。
    [8]陳光華,“資訊檢索查詢之自然語言處理”,中國圖書館學會會報,第57期,民國85年,頁141-153。.
    [9]陳光華、莊雅蓁,“資訊檢索之中文詞彙擴展”,資訊傳播與圖書館學,第八卷第一期,民國90年,頁59-75。
    [10]陳光華、莊雅蓁,“應用於資訊檢索的中文同義詞之建構”,中國圖書館學會會報,第67期,民國90年,頁93-108。
    英文參考文獻
    [1]Alan F. Smeaton, & Ian Quigley, “Experiments on Using Semantic Distances Between Words in Image Caption Retrieval”, Proceedings of the 19th International Conference on Research and Development in Information Retrieval, 1996, pp.176-180.
    [2]Julio Gonzalo, & Felisa Verdejo, & Irina Chugur, &Juan Cigarran, “Indexing with WordNet synsets can improve text retrieval”, Proceedings of the COLING/ACL`98 Workshop on Usage of WordNet for NLP, 1998.
    [3]Mario JARMASZ, & Stan SZPAKOWICZ, “Roget’s Thesaurus and Semantic Similarity”, Proceedings of the International Conference on Recent Advances in Natural Language Processin, 2003, pp.212-219.
    [4]Rada Mihalcea, & Dan Moldovan, “Semantic Indexing using WordNet Senses”, Proceedings of ACL Workshop on IR & NLP, 2000.
    [5]Rila Mandala, & Tokunaga Takenobu, & Tanaka Hozumi, “The Use of WordNet in Information Retrieval”, Proceedings of the COLING/ACL Workshop on Usage of WordNet in Natural Language Processing System, 1998, pp.31-37.
    [6]V´aclav Sn´aˇsel, & Pavel Moravec, & Jaroslav Pokorn´y, “WordNet Ontology Based Model for Web Retrieval”, Proceedings of International Workshop on Challenges in Web Information Retrieval and Integration, IEEE Computer Society Press, 2005, pp.231-236.
    [7]Ian Niles, & Adam Pease, “Towards a Standard Upper Ontology”, Proceedings of the 2nd International Conference on Formal Ontology in Information Systems, 2001, pp.2-9.
    [8]Chu-Ren Huang, & Xiang-Bing Li, & Jia-Fei Hong,” Domain Lexico-Taxonomy: An Approach Towards Multi-domain Language Processing”, Proceedings of the Asian Symposium on Natural Language Processing to Overcome Language Barriers, 2004, pp.52-60.
    [9]Nicholas J. Belkin, & W. Bruce Croft, “Information Filtering and Information Retrieval─Two Side of the same coin”, Communications of the ACM, 35(2), 1992, pp.29-38.
    [10]Karen Spark Jones, & Peter Willett,「Readings in Information Retrieval」, 1997, pp.1-25
    [11]Adorno, & Marco, & Bolin etc., “Critical Review of Essay #2:“Readings in Information Retrieval”, 1997.
    [12]Kuang-hua Chen, & Chien-tin Wu, “Automatically Controlled- Vocabulary Indexing for Text Retrieval”, Proceedings of the 12 Research on Computational Linguistics Conference, (ROCLING99), 1986, pp.171-185.
    [13]Rakesh Gupta, & Mykel J.Kochenderfer, “Using Statistical Techniques and WordNet to Reason with Noisy Data”, Workshop on Adaptive Text Extraction and Mining, Nineteenth National Conference on Artificial Intelligence (AAAI-04), 2004.
    [14]Tefko Saracevic, & Paul Kantor, & Alice Y. Chamis`, & Donna Trivison, “A Study of Information Seeking and Retrieving”, JASIS, (39), 1998, pp.161-216.
    [15]M.E.IVMBON, & J.L.KUHNS, “On Relevance, ProbabiUstic Indexing and Information Retrieval”, Journal of the ACM 7(3), 1960, pp.216-244.
    [16]Tomek Strzalkowski, “Robust Text Processing in Automated Information Retrieval”, Proceedings of the 4 Conference on Applied Natural Language Processing in Stuttgart. ACL, 1994, pp.168-173.
    [17]Dmitri Asonov, & Johann-Christoph Freytag, “Repudiative Information Retrieval”, Pre- and Postproceedings of ACM Workshop on Privacy in the Electronic Society (WPES2002), 2002, pp32-40.
    [18]Peter Ingwersen, ”Information Retrieval Interaction”, 1992, pp.49-60
    參考網站
    [1]中央研究院中英雙語知識本體詞網, http://bow.sinica.edu.tw/
    [2]DJ小百科, http://www.moneydj.com/z/glossary/gl_homeA.asp?a=$^$glossary$glcat[18]DJHTM
    [3]Suggested Upper Merged Ontology, http://ontology.teknowledge.com/
    [4]台灣證券交易所證券辭典, http://www.tse.com.tw/ch/dict.php
    [5]Yahoo股市常用術語, http://geocities.yahoo.com.br/itapema_br/stk/Books/StockLanguage.htm
    [6]聲達資訊股市術語, http://www.sound.com.tw/page.asp?sp=2&url=research/terminology.asp
    [7]Yahoo股市名詞解釋, http://tw.money.yahoo.com/faqterm/stock_term_0.html
    [8]Quote123闊網─股市辭典http://www.quote123.com/usmkt/edu/glossary/glossary.asp
    [9]富林投資─金融小辭典, http://www.fuland.com.tw/flh04.htm
    [10]聯合新聞網─理財百科, http://udn.com/UDN_STOCK/GLOSSARY/P/Pindex.htm
    [11]股市用語, http://www.888money.com.tw/Analysis/k01.htm
    [12]PIIS股市用語, http://www.piis.com.tw/piis/stockname/c.htm
    [13]德信證券理財百科, http://www.rsc.com.tw/money/money_2.html
    [14]高點考古題天地, http://www.get.com.tw/getroot/exam/stock/
    Description: 碩士
    國立政治大學
    資訊管理研究所
    92356016
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0923560161
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    56016101.pdf44KbAdobe PDF2910View/Open
    56016102.pdf70KbAdobe PDF2698View/Open
    56016103.pdf85KbAdobe PDF2880View/Open
    56016104.pdf106KbAdobe PDF2883View/Open
    56016105.pdf214KbAdobe PDF22733View/Open
    56016106.pdf195KbAdobe PDF22698View/Open
    56016107.pdf309KbAdobe PDF21171View/Open
    56016108.pdf153KbAdobe PDF27194View/Open
    56016109.pdf176KbAdobe PDF21023View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback