Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/35180
|
Title: | The Rule Extraction from Multi-layer Feed-forward Neural Networks |
Authors: | 柯文乾 Ke, Wen-Chyan |
Contributors: | 蔡瑞煌 Tsahi Ray 柯文乾 Ke, Wen-Chyan |
Keywords: | 知識萃取 規則萃取 法則萃取 債券評價 knowledge extraction rule extraction bond-pricing |
Date: | 2002 |
Issue Date: | 2009-09-18 14:22:32 (UTC+8) |
Abstract: | 神經網路已經被成功地應用於解決各種分類及函數近似的問題,尤其因為神經網路是個萬能的近似器(universal approximator),所以對於函數近似的問題效果更為顯著。以往對於此類問題雖然多數以線性的分析工具為主,但是實際上多數問題本質上是非線性的,所以對於非線性分析工具的需求其實是很大的。自1986年起,神經網路本身的運作一直被視為一個黑箱作業,難以判斷網路學習結果的合理性,更無法有效地幫助使用者增進其知識,因此提供一套合理及有效的神經網路分析方法是重要。 本文提出一套分析神網路系統的方法;利用線性規劃的技巧萃取及分析網路中的規則(rule),而不需要對任何資料集做分析;進而利用統計無母數方法-符號檢定-歸納出網路中的知識。以債券評價為例,驗證此方法的可行性,實證結果亦顯示此方法所萃取出來的規則是合理的,且由這些萃取出的規則中,所歸納出來有關債券評價的知識多數是合理的。 Neural networks have been successfully applied to solve a variety of application problems including classification and function approximation. They are especially useful for function approximation problems because they have been shown to be uni-versal approximators. In the past, for function approximation problems, they were mainly analyzed via tools of linear analyses. However, most of the function approxi-mation problems needed tools of nonlinear analyses in fact. Thus, there is the much demand for tools of nonlinear analyses. Since 1986, the neural network is considered a black box. It is hard to determine if the learning result of a neural network is rea-sonable, and the network can not effectively help users to develop the domain knowl-edge. Thus, it is important to supply a reasonable and effective analytic method of the neural network. Here, we propose an analytic method of the neural network. It can extract rules from the neural network and analyze them via the Linear Programming and does not depend on any data analysis. Then we can generalize domain knowledge from these rules via the sign test, a statistical non-parameter method. We take the bond-pricing as an instance to examine the feasibility of our proposed method. The result shows that these extracted rules are reasonable by our method and that these generalized domain knowledge from these rules is also reasonable. |
Reference: | Bishop, C. M. (1995). Neural network for pattern recognition. Oxford : Clarendon Press. Fu, L. (1994). Neural networks in computer intelligence. McGraw-Hill, Inc. Gaweda, A. E., Setiono, R., and Zurada, J. M. (2000). "Rule extraction from feed--forward neural network for function approximation." In: Proceedings of the 5th Conference on Neural Networks and Soft Computing, Zakopane, Poland, pp. 311-316. Gill, P. E., Mao, Z. H., and Li, Y. D. (1981). Practical optimization. New York: Aca-demic. Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the theory of neural computation, Redwood City, CA: Addison Wesley. Hogg, R. V., Tains, E. A. (1997a). Probability and statistical inference-5th ed, New Jersey: Prentice Hall, pp. 394-455. Hogg, R. V., Tains, E. A. (1997b). Probability and statistical inference-5th ed, New Jersey: Prentice Hall, pp. 608-614. Karnin, E. D. (1990). "A simple procedure for pruning back-propagation trained neural networks." IEEE Transactions on Neural Networks, Vol. 1, No. 2, pp.239-242. Kerber, R. (1992). "ChiMerge: Discretization of numeric attributes." In: Proceedings Ninth National Conference on Artificial Intelligence, Menlo Park, CA: AAAI Press, pp. 123-128. Lloyd, S. P. (1982). "Least squares quantization in PCM." IEEE Transactions on In-formation Theory, Vol. 28, No. 2, 129-137. Liu, H., and Setiono, R. (1995). "Chi2: Feature selection and discretization of nu-meric attributes." In: Proceedings of the Seventh International Conference on Tools with Artificial Intelligence, pp. 388-391. Liu, H., and Tan, S. T. (1995). "X2R: A fast rule generator." In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE Press. Malkiel, B. G., (1962). "Expectations, bond prices, and the term structure of interest rates." Quarterly Journal of Economics, Vol 76, No. 2, pp.197-218. Murty, K. G., (1983). Linear Programming. New York: John Wiley & Sons, pp.91-181. Neter, J., Kuter, M.H., Nachtsheim C.J., and Wasserman W. (1996). Applied linear regression models─3rd ed. Richard D. Irwin, pp. 640. Quinlan, J. R. (1993), C4.5: Programs for machine learning. Sam Mateo, CA: Morgan Kaufmann. Rosenblatt, F. (1958), "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological Review, Vol. 65, pp. 386-408. Rumelhart, D.E., Hinton, G.E., and Williams, R. (1986). "Learning internal repre-sentation by error propagation." Parallel Distributed Processing. Cambridge, MA: MIT Press, Vol. 1, pp. 318-362. Saito, K., and Nakano R. (2002). "Extracting regression rules from neural networks." Neural Network, Vol. 15, No. 10, pp. 1297-1288. Saito, K., and Nakano R. (2000). "Discovery of relevant weight by minimizing cross-validation error." In: Proceedings of the Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Kyoto, Japan, pp. 372-375. Seber, G.A.F., and Wild, C.J. (1989). Nonlinear regression. New York: John Wiley & Sons, pp. 465-471 Setiono, R., Leow, W. K., and Zurada, J. M. (2002). "Extraction of rules from artifi-cial neural networks for nonlinear regression," IEEE Transactions on Neural Networks, Vol. 13, No. 3, pp. 564-577. Setiono, R. (1997). "A penalty function approach for pruning feed-forward neural networks." Neural Computation, Vol. 9, No. 1, pp.185-204. Setiono, R., and Liu. H. (1997). "NeuroLinear: From neural networks to oblique de-cision rules." Neurocomputing, Vol. 17, No. 1, pp. 1-24. Setiono, R., and Liu, H. (1996). "Symbolic representation of neural networks." IEEE Computer, Vol. 29,. No. 3, pp. 71-77. Sharpe, W. F. and Alexander, G. J. (1990). Investments-the fourth edition. New Jer-sey: Prentice-Hall, Inc, pp.382-384. Simth, M. (1993). Nerual networks for statistical modeling. New York: Van Nostrand Reinhold, pp.167. Stone, M. (1974). "Cross-validatory choice and assessment of statistical predictions (with discussion)." Journal of the Royal Statistical Society B, Vol. 36, No. 1, pp.111-147. Taha, I. A., and Ghosh, J. (1999). "Symbolic interpretation of artificial neural net-works." IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 3, pp.448-463. Taha, I. A., and Ghosh, J. (1996). "Three techniques for extracting rule from feed-forward networks." In: Dagli, C. H., Akay, M., Fernandez, B., Chen, C. L. P., Ghosh J. (Eds). Intelligent Engineering System Through Artificial Neural Networks (Volume 6), St. Louis: ASME Press, pp.23-28. The MathWorks, Inc. (2002). Optimization Toolbox User’s Guide. [Online]. Avail-able: http://www.mathworks.com/access/helpdesk/help/pdf_doc/optim/optim_tb. pdf Towell, G., and Shavlik, J. (1993). "The extraction of refined rules from knowl-edge-based neural networks." Machine Learning, Vol. 13, No. 1, pp. 71-101. Vapnik, V. (1995). "The nature of statistical learning theory." New York: Springer-Verlag. Van Ooyen, A., Nienhuis, B. (1992). "Improving the convergence of the backpropa-gation algorithm." Neural Networks, Vol. 5, No. 3, pp.465-471. Weijters, T., and Bosch, A. V. D. (1998). "Interpretable neural networks with BP-SOM," In: Tasks and Methods in Applied Artificial Intelligence. Lecture Notes in Artificial Intelligence 1416(A. del Pobil, J. Mira, and M. Ali, eds.), Ber-lin: Springer, pp. 564-573. Zhou, R. R., Chen, S. F., and Chen, Z. Q. (2000). "A statistics based approach for ex-tracting priority rules from trained neural networks." In: Proceedings of the IEEE-INNS-ENNS International Join Conference on Neural Network, Como, It-aly, Vol. 3, pp. 401-406. |
Description: | 碩士 國立政治大學 資訊管理研究所 90356002 91 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0090356002 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|