English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51056655      Online Users : 941
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/35143


    Title: 過濾靴帶反覆抽樣與一般動差估計式
    Sieve Bootstrap Inference Based on GMM Estimators of Time Series Data
    Authors: 劉祝安
    Liu, Chu-An
    Contributors: 郭炳伸
    林信助

    Kuo, Biing-Shen
    Lin, Shinn-Juh

    劉祝安
    Liu, Chu-An
    Keywords: 過濾靴帶反覆抽樣法
    區塊拔靴法
    一般動差估計式
    時間序列資料
    Sieve bootstrap
    block bootstrap
    GMM estimators
    time series data
    Date: 2004
    Issue Date: 2009-09-18 14:16:00 (UTC+8)
    Abstract: In this paper, we propose two types of sieve bootstrap, univariate and multivariate approach, for the generalized method of moments estimators of time series data. Compared with the nonparametric block bootstrap, the sieve bootstrap is in essence parametric, which helps fitting data better when researchers have prior information about the time series properties of the variables of interested. Our Monte Carlo experiments show that the performances of these two types of sieve bootstrap are comparable to the performance of the block bootstrap. Furthermore, unlike the block bootstrap, which is sensitive to the choice of block length, these two types of sieve bootstrap are less sensitive to the choice of lag length.
    Reference: [1] Andrews, D. W. K. (2002), “The Block-Block Bootstrap: Improved Asymptotic Refinements,” Cowles Foundation Discussion Paper No. 1370, Yale University, New Haven, CT.
    [2] B¨uhlmann, P. (1997), “Sieve Bootstrap for Time Series,” Bernoulli, 3, 123-148.
    [3] B¨uhlmann, P. (2002), “Bootstraps for Time Series,” Statistical Science, 17, 52-72.
    [4] Efron, B. (1979), “Bootstrap Methods: Another Look at the Jackknife,” Annals of Statistics, 7, 1-26.
    [5] Efron, B., and R. J. Tibshirani (1993), An Introduction to the Bootstrap. (Chapman & Hall, New York).
    [6] Freedman, D. A. (1984), “On Bootstrapping Two-Stage Least-Squares Estimates in Stationary Linear Models,” Annals of Statistics, 12, 827-842.
    [7] Hall, P., and J. L. Horowitz (1996), “Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators,” Econometrica, 64, 891-961.
    [8] Hansen, B. E. (2004), Graduate Econometrics Lecture Notes, Department of Economics, University of Wisconsin, Madison, WI.
    [9] Hansen, L. P. (1982), “Large Sample Properties of Generalized Method of Moments Estimators,” Econometrica, 50, 1029-1054.
    [10] H¨ardle, W., J. L. Horowitz, and J.-P. Kreiss (2003), “Bootstrap Methods for Time Series,” International Statistical Review, 71, 435-459.
    [11] Horowitz, J. L. (2001), “The Bootstrap,” in Handbook of Econometrics, Vol. 5, ed. J. J. Heckman and E. E. Leamer. (North-Holland Publishing Co., Amsterdam).
    [12] Inoue A., and M. Shintani (2001), “Bootstrapping GMM Estimators for Times Series,” accepted for publication in the Journal of Econometrics, Department of Agricultural and Resource Economics, North Carolina State University, Raleigh,
    NC.
    [13] Kocherlakota, N. R. (1990), “On Tests of Representative Consumer Asset Pricing Models,” Journal of Monetary Economics, 26, 285-304.
    [14] K¨unsch, H. R. (1989), “The Jackknife and the Bootstrap for General Stationary Observations,” Annals of Statistics, 17, 1217-1241.
    [15] Lahiri, S. N. (1999), “Theoretical Comparisons of the Block Bootstrap Methods,” Annals of Statistics, 27, 386-404.
    [16] L¨utkepohl, H. (1993), Introduction to Multiple Time Series Analysis. (Springer-Verlag, New York).
    [17] MacKinnon, J. G. (2002), “Bootstrap Inference in Econometrics,” Canadian Journal of Economics, 35, 615-645.
    [18] Staiger, D., and J. H. Stock (1997), “Instrumental Variables Regression with Weak Instruments,” Econometrica, 65, 556-586.
    [19] Stock, J. H., and J. H. Wright (2001), “GMM with Weak Identification,” Econometrica, 68, 1055-1096.
    [20] Tauchen, G. (1986), “Statistical Properties of Generalized Method-of-Moments Estimators of Structure Parameters Obtained from Financial Market Data,” Journal of Business and Economic Statistics, 4, 397-425.
    Description: 碩士
    國立政治大學
    國際經營與貿易研究所
    91351007
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0913510071
    Data Type: thesis
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    51007101.pdf52KbAdobe PDF2882View/Open
    51007102.pdf54KbAdobe PDF2958View/Open
    51007103.pdf68KbAdobe PDF2774View/Open
    51007104.pdf74KbAdobe PDF21062View/Open
    51007105.pdf102KbAdobe PDF21584View/Open
    51007106.pdf87KbAdobe PDF226480View/Open
    51007107.pdf111KbAdobe PDF23677View/Open
    51007108.pdf97KbAdobe PDF2971View/Open
    51007109.pdf68KbAdobe PDF2779View/Open
    51007110.pdf67KbAdobe PDF2856View/Open
    51007111.pdf82KbAdobe PDF21071View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback