政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/35090
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113303/144284 (79%)
造访人次 : 50814872      在线人数 : 595
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/35090


    题名: 隨機利率下,跨通貨投資組合選擇權之定價與避險策略
    Pricing and Hedging Cross-Currency Portfolio Option with Stochastic Interest Rates
    作者: 王祥安
    Wang , Hsiang-An
    贡献者: 胡聯國
    廖四郎

    Hu, Lien-Kuo
    Liao, Szu-Lang

    王祥安
    Wang , Hsiang-An
    关键词: 投資組合選擇權
    平賭測度
    遠期平賭
    利率模型
    隨機利率
    Portfolio Option
    Martingale
    Forward Measure Approach
    Interest Rate Models
    Stochastic Interest Rates
    HJM
    Cross Currency
    日期: 2003
    上传时间: 2009-09-18 14:08:14 (UTC+8)
    摘要: 在WTO成立,各國國際化程度日益提高的同時,企業與個人進行跨國投資的情形也愈來愈普遍,跨國投資除了要考慮標的資產之報酬與波動性之外,尚須考量匯率變動所產生之風險與不確定性。當某一國外資產具有正向預期報酬率的同時,實現後的報酬率卻又不一定為正,正是因為匯率波動所產生的影響。又,傳統財務理論告訴我們,藉由增加投資組合中所有非完全正相關的資產個數可以有效的降低投資組合的非系統風險,因此投資人在進行投資時往往採用建構投資組合的方式取代持有少數資產的型態。然而,在建構跨通貨避險投資組合時,若是對於投資組合中的各項資產與外幣分別進行避險(分別利用衍生性商品避險),往往是費時、費力又不具有效率。因此,對於整個投資組合進行避險反而是一個比較好的方法,當投資組合價值發生變動時,可以即時對於各項資產部位與外幣分別做調整,遠較於對個別資產進行避險來的方便、快速且有效。
    In most cases, investment is made of building a portfolio rather than single asset. Therefore, it is necessary to develop techniques of valuing portfolio derivatives. Moreover, we consider a cross-currency portfolio that account for currency and interest rate risk. As interest rate is stochastic, we use Heath-Jarrow Morton (HJM) Approach to describe its dynamics. Applying Vorst (1992); Geman, Karoui and Rochet(1995), we derive the approximated close-form of the cross-currency portfolio option.

    In HJM Approach, it is difficult to acquire hedge ratios of options. We apply another method to build a hedging portfolio. Then, we perform numerical simulations to test its hedging efficiency and sensitivity with respect to different variables.
    參考文獻: 1. 王銘杰,無匯率風險的國外權益資產取得策略,國立暨南大學國際企業系,2002。
    2. 呂桔誠、廖四郎、王昭文,組合型選擇權之評價與其在投資組合避險策略上之應用,亞太經濟管理評論,6卷2期,2003/3,p1-20.
    3. 陳松男、鄭翔尹,『組合型權證的正確評價與避險方法』,證券市場發展季刊,1999,11卷4期,p1-23.
    4. 陳兆維,利率波動結構對標準與平均利率上限契約評價的影響,國立台灣大學財務金融學研究所,2002。
    5. 張雅琪,隨機利率下外幣選擇權定價理論與模擬,國立政治大學金融學系研究所,1999。
    6. 張士琦,Heath-Jarrow-Morton 架構下,四種外國債券選擇權之評價與避險,世新大學管理學院經濟學系研究所,2001。
    7. Alziary B., Decamps J-P and Koehl P-F, “A PDE Approach to Asian Options: Analysis and Numerical Evidence”, Journal of Banking and Finance, Vol.21, 1997, p613-640.
    8. Amin, K. I. and Jarrow R., ”Pricing Foreign Currency Options under Stochastic Interest Rates”, Journal of International Money Finance, Vol.10, 1991, P310-329.
    9. Amin K. I. and Morton A., “Implied Volatility Functions in Arbitrage-Free Term Structure Models”, Journal of Financial Economics. Vol.35, 1994, p141-180.
    10. Black Fischer and Scholes Myron, “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, Vol.81, 1973, p637-654.
    11. Bouaziz L; Briys E. and Crouhy M., “The Pricing of Forward-Start Asian Options”, Journal of Banking and Finance”, Vol.18, 1994, p823-839.
    12. Boyle P., “Options: A Monte Carlo Approach”, Journal of Financial Economics, Vol.4, 1977, p323-338.
    13. Brace A., Gatarek D. and Musiela M., “The Market Model of Interest Rate Dynamics”, Mathematical Finance, Vol.7, 1997, p127-155.
    14. Briys E., Mai H. M., Bellalah M. and de Varenne F., “Options, Futures and Exotic Derivatives”, John Wiley & Sons, 1998.
    15. Carverhill A. and Clewlow L., “Flexible Convolution”, Risk, Vol.5, 1990, p25-29.
    16. Chacko G. and Das S., “Average Interest”, Working Paper, Harvard Business School, 1997.
    17. Clewlow Les and Strickland Chris, “Implementing Derivatives Models”, John Wiley & Sons, 1998.
    18. Corwin J.; Boyle P. and Tang K., “Quasi-Monte Carlo Methods in Numerical Finance”, Management Science, Vol.42, 1996, p1705-1711.
    19. Cox, J. C. and Ross S. A., “The Valuation of Options for Alternative Stochastic Process”, Journal of Financial Economics, Vol.7:3, 1976, p229-264.
    20. Cox, J. C., Ingersoll J. E. and Ross S. A., “A Intertemporal General Equilibrium Model of Asset Prices”, Econometrica, Vol.53, 1985a, p363-384.
    21. Cox, J. C., Ingersoll J. E. and Ross S. A., “A Theory of Term Structure of Interest Rates”, Econometrica, Vol.53, 1985b, p385-407.
    22. Curran, M., “Valuing Asian and Portfolio Options by Conditioning on Geometric Mean Price”, Management Science, Vol.40, 1994, p1705-1711.
    23. Derosa David, “Currency Derivatives”, John Wiley & Sons, 1998.
    24. Derosa David, “Options on Foreign Exchange”, 2nd edition, John Wiley & Sons, 2000.
    25. Dewynne J. and Wilmott P., “Aisan Options as Linear Complementarity Problems”, Advances in Futures and Options Research, Vol.8, 1995, p145-173.
    26. El Karoui N., Rochet J. C., “A Pricing Formula for Options on Coupon Bonds”, Working Paper, SDEES, 1989.
    27. Filipovic D., “Consistency Problems for HJM Interest Rate Models”, Unpublished Doctoral Dissertation. Swiss Federal Institute of Technology, 2000.
    28. Geman H., “The Importance of the Forward Neutral Probability in a Stochastic Approach of Interest Rates”, Working Paper, ESSEC, 1989.
    29. Geman H., and El Karoui N., Rochet J. C., “Change of Numeraire, Change of Probability Measures and Pricing of Options”, Journal of Applied Probability, Vol.32, 1995, p443-458.
    30. Geman H., and Yor M., “Bessel Process, Asian Options and Perpetuities”, Mathematical Finance, Vol.3, 1993, p349-375.
    31. Gentle D., “Basket Weaving”, Risk, Vol.6, 1993, p51-52.
    32. Hakala J□rgen and Wystup Uwe, Foreign Exchange Risk: Models, Instruments and Strategies, Risk Books, 2002.
    33. Harrison J. M. and D. M. Kreps, “Martingales and Arbitrage in Multiperiod Security Markets”, Journal of Economic Theory, Vol.20, 1979, p381-408.
    34. Harrison J. M. and S. R. Pliska, “Martingale and Stochastic Integrals in the Theory of Continuous Trading”, Stochastic Process and Their Applications, Vol.11, 1981, p215-260.
    35. Harrison J. M. and S. R. Pliska, “A Stochastic Calculus Model of Continuous Trading: Complete Markets”, Stochastic Process and Their Applications, Vol.15, 1983, p313-365.
    36. Haykov J., “A Better Control Variate for Pricing Standard Asian Options”, Journal of Financial Engineering, Vol.1993, p207-216.
    37. Heath D., Jarrow R. and Morton A., “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation”, Econometrica, Vol.60, 1922, p77-105.
    38. Ho T.S.Y. and Lee S.B., ”Term Structure Movements and Pricing Interest Rate Contingent Claims”, Journal of Finance, Vol.41, 1986, p1011-1029.
    39. Hull, John C. “Options, Futures, & Other Derivatives” 5th Edition, Pretice-Hall, 2003.
    40. Hull, John C. and White Alan, “Pricing Interest Rate Derivative Securities”, Review of Financial Studies, Vol.33, 1990, p423-440.
    41. Hull John C. and White Alan, “Bond Option Pricing Based on a Model for The Evolution of Bond Prices”, Advances in Futures and Options Research, 1993a, Vol6, p1-13.
    42. Hull John C. and White Alan, “Efficient Procedures for Valuing European and American Path-Dependent Options”, Journal of Derivatives, Vol.1, 1993b, p21-31.
    43. Hyunh C. B., “Back to Baskets”, Risk, Vol.7, 1994, p55-61.
    44. J□ckel Peter, “Monte Carlo Methods in Finance”, John Wiley & Sons, 2002.
    45. Jamshidian F., “LIBOR and Swap Market Models and Measures”, Finance and Stochastic, Vol.1, 1997, p293-330.
    46. Jarrow R., “The Pricing of Commodity Option with Stochastic Interest Rates”, Advances in Futures and Options Research, Vol.2, 1987, p19-45.
    47. Jarrow R. and Rudd A. “Option Pricing”, Irwin, 1983.
    48. Ju N., “Fourier Transformation, Martingale and the Pricing of Average Rate Derivatives”, Ph.D. Thesis, U. California-Berkley, 1997.
    49. Kemma A. and Vorst T., “A Pricing Method for Options Based on Average Asset Values”, Journal of Banking and Finance, Vol.14, 1990, p113-129.
    50. Kramkov D. and Mordecky E., “Integral Options”, Theory of Probability and Its Applications, Vol.39, 1994, p162-171.
    51. Kuo I. D., “Implied Volatility Functions for One and Two Factor Heath, Jarrow, and Morton Models, 2002 現代財務論壇,台中東海大學。
    52. Levy E., “Pricing European Average Rate Currency Options”, Journal of International Money and Finance, Vol.11, 1992, p474-491.
    53. Li A., Ritchken P. and Sankarasubramanian L., “Lattice Models for Pricing American Interest Rate Claims”, Journal of Finance, Vol.50, 1995, 719-737
    54. Miltersen K., Sandmann K. and Sondermann D., “Closed Form Solutions for Term Structure Derivatives with Lognormal Interest Rates”, Journal of Finance. Vol.52, 1997, p409-430.
    55. Milevsky M. A. and Posner S. E., “Asian Options, the Sum of Lognormal and Reciprocal Gamma Distribution”, Journal of Financial and Quantitative Analysis, Vol.33, 1998, p409-422.
    56. Milevsky M. A. and Posner S. E., “A Closed-Form Approximation for Valuing Basket Options”, Journal of Derivatives, Vol.6, 1998, p54-61.
    57. Musiela M. and Rutkowski M., “Martingale Methods in Financial Modelling”, Springer, 1997.
    58. Neave E. and Turnbull S., “Quick Solutions for Arithmetic Average Options on Recombining Random Walk”, 4th Actuarial Approach for Dinancial Risks International Colloquium, 1993, p718-739.
    59. Nelken Isreal, “The Handbook of Exotic Options”, Irwin, 1996.
    60. Nielsen J. A. and Sandman K., “The Pricing of Asian Options under Stochastic Interest Rates”, Applied Mathematical Finance, Vol.3, 1996, p209-236.
    61. Ritchken P. and Chang I., “Interest Rate Option Pricing with Volatility Humps”, Review of Derivatives Research, Vol.3, 1999, p237-262.
    62. Ritchken P. and Sankarasubramanian L., “Volatility Structures of Forward Rates and The Dynamics of The Term Structure, Mathematical Finance, Vol.5, 1995, p55-72.
    63. Rogers L. and Shi Z., “The Value of an Asian Option”, Journal of Applied Probability, Vol.32, 1995, p1077-1088.
    64. Rubinstein M., “Return to Oz”, Risk, Vol.7, 1994, p67-70.
    65. Ruttiens A., “Currency Options on Average Exchange Rates Pricing and Exposure Management”, 20th Annual Meeting of the Decision Science Institute, New Orleans, 1990.
    66. Shirawawa Hiroshi, “Evaluation of the Asian Option by The Dual Martingale Measure”, Asian-Pacific Financial Markets, Vol.6, 1999, p183-194.
    67. Shreve Steven, Chalasani Prasad and Jha Somesh, “Stochastic Calculus and Finance”, Lecture Notes, CMU, 1997.
    68. Tavella Domingo, “Quantitative Methods in Derivatives Pricing”, John Wiley & Sons, 2002.
    69. Turnbull S. and Wakeman L., “A Quick Algorithm for Pricing European Average Option”, Journal of Financial and Quantitative Analysis, Vol.26, 1991, p377-389.
    70. Vasicek O., “An Equilibrium Characterization of The Term Structure”, Journal of Financial Economics, Vol.5, 1977, p177-188.
    71. Vorst T., “Pricing and Hedge Ratios of Average Exchange Rate Options”, International Review of Financial Analysis, Vol.1, 1992, p179-193.
    72. Yor M., “From Planar Brownian Windings to Asian Options”, Insurance: Mathematics and Economics, Vol.13, 1993, p23-34.
    描述: 碩士
    國立政治大學
    國際經營與貿易研究所
    91351020
    92
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0091351020
    数据类型: thesis
    显示于类别:[國際經營與貿易學系 ] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    35102001.pdf132KbAdobe PDF2792检视/开启
    35102002.pdf121KbAdobe PDF2901检视/开启
    35102003.pdf99KbAdobe PDF21046检视/开启
    35102004.pdf72KbAdobe PDF2829检视/开启
    35102005.pdf62KbAdobe PDF2956检视/开启
    35102006.pdf68KbAdobe PDF21444检视/开启
    35102007.pdf107KbAdobe PDF2744检视/开启
    35102008.pdf70KbAdobe PDF2724检视/开启
    35102009.pdf62KbAdobe PDF2740检视/开启
    35102010.pdf456KbAdobe PDF2775检视/开启
    35102011.pdf43KbAdobe PDF2622检视/开启
    35102012.pdf103KbAdobe PDF21756检视/开启
    35102013.pdf92KbAdobe PDF2869检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈