政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/35071
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114104/145136 (79%)
Visitors : 52235364      Online Users : 453
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/35071


    Title: 單元製造系統之人力配置策略研究
    A Study of Operator A ssignments Flexibility within and betwe en Cellular Manufacturing Systems
    Authors: 張毓欣
    Contributors: 洪叔民
    張毓欣
    Keywords: 單元製造系統
    人力配置策略
    人力資源有限系統
    工作量平衡程度
    工作量共享程度
    Cellular Manufacturing Systems
    Labor Assignment
    Labor Limited Systems
    Workload Balancing
    Workload Sharing
    Date: 2005
    Issue Date: 2009-09-18 13:43:32 (UTC+8)
    Abstract:   由於少量多樣的生產趨勢,單元製造系統(Cellular Manufacturing Systems)已成為目前製造業的重點之一。在單元製造系統中,具有多種技能的員工是必備的條件,如何有效的配置人力策略即為本研究的重點。人力配置策略包含了指定式(由單一操作員負責某件工作)、共享式(由兩名或兩名以上操作員共同負責某件工作)及混合式人力配置策略(同時使用指定式和共享式兩種策略),其中,共享式和混合式的人力配置策略可稱為彈性人力配置策略。要使用彈性人力配置策略,需要有人力彈性(Labor Flexibility)。
      所謂的人力彈性在單元製造系統可分為兩個方向:(1)單元間的人力彈性(Inter-Cell Labor Flexibility),即不同單元間的轉換能力,(2)單元內的人力彈性(Intra-Cell Labor Flexibility),即單元內不同工作間的轉換能力。本研究分為兩個主要部份,分別探討在單元間採用彈性人力配置策略和在單元內採用彈性人力配置策略對於工作量平衡程度、工作量共享程度和績效表現的影響。
      根據研究結果,在單元內採用彈性的人力配置策略對於操作員間的工作量平衡和績效表現皆有直接且正向影響,但隨著操作員數目的減少,彈性的人力配置策略對於績效表現之影響減弱、甚至變為負向效果;在單元間採用彈性的人力配置策略之效果和在單元內採用彈性的人力配置策略相似,對操作員間的工作量平衡和績效表現亦有直接且正向影響,且隨著單元數增加,在單元間採用彈性的人力配置策略對績效表現的影響增強。本研究之結果可做為運用彈性的人力配置策略以及規劃交互訓練時的參考方向,並可用此架構來預測績效改變。
    The object of the research is to study agile labor assignments in cellular manufacturing systems by intra-cell and inter-cell operator’s mobility. There are three labor assignments strategies including dedicated (only one operator is responsible for a work), shared (two or more than two operators are responsible for a work), and combined assignment (using both of dedicated assignment and shared assignment). Different assignments lead to different workload balancing, workload sharing and performance.
    The research builds a simulate framework which includes operators’ moving rule, proposition of empirical study and index of workload balancing and workload sharing. According the result of research, applying intra-cell operator’s mobility can improve operator’s workload balancing and performance. Nevertheless, the relationship of intra-cell operator’s mobility and performance would decrease with decreasing of labor limited. The impact of inter-cell operator’s mobility is similar to intra-cell operator’s mobility, but it would increase with increase of complexity. The simulate framework which pass through the testing can use in an actual company case, provide a direction of how to use labor assignments, and forecast the impact of using agile labor assignment.
    Reference: Agarwal, A., & Sarkis, J., (1998). A review and analysis of comparative performance studies on functional and cellular manufacturing layouts. Computer & Industrial Engineering, 34(1), 77-89.
    Ang, C. L., & Willey, P. C. T., (1984). A comparative study of the performance of pure and hybrid group technology manufacturing systems using computer simulation techniques. International Journal of Production Research, 22(2), 193-233.
    Askin, R. G., & Chen, J., (2006). Dynamic task assignment for throughput maximization with worksharing. European Journal of Operational Research, 168(3), 853-869.
    Bokhorst, L. A. C., Slomp, J., & Gaalman, G. J. C., (2004). On the who-rule in Dual Resource Constrained (DRC) manufacturing systems. International Journal of Production Research, 42(23), 5049-5074.
    Brusco, M. J., & Johns, T. R., (1998). Staffing a multiskilled workforce with varying levels of productivity: An analysis of cross-training policies. Decision Sciences, 29(2), 499-515.
    Burgess, A.G., Vollmann, T.E., & Morgan, I., (1993). Cellular manufacturing: its impact on the total factory. International Journal of Production Research, 31(8), 2059-2077.
    Cesani, V. I., & Steudel, H. J., (2005). A study of labor assignment flexibility in cellular manufacturing systems. Computer & Industrial Engineering, 48(3), 571-591.
    Eckstein, A. L. H., & Rohleder, T. R., (1998). Incorporating human resources in group technology / cellular manufacturing. International Journal of Production Research, 36(4), 1199-1222.
    Felan, J. T., & Fry, T. D., (2001). Multi-level heterogeneous worker flexibility in a dual resource constrained (DRC) job-shop. International Journal of Production Research, 39(14), 3041-3059.
    Flynn, B. B., (1987). Repetitive lots: the use of a sequence dependent set-up time scheduling procedure in grouping technology and traditional shops. European Journal of Operational Management, 7(2), 203-216.
    Flynn, B. B., & Jacobs, F. R., (1986). A simulation comparison of group technology with traditional job shop manufacturing. International Journal of Production Research, 24(5), 1171-1192.
    Garza, O., & Smunt, T. L., (1991). Countering the negative impact of inter-cell flow in cellular manufacturing. Journal of Operations Management, 10(1), 92-118.
    Gel, E. S., Hopp, W. J., & Van Oyen, M. P., (2002). Factors affecting opportunity of worksharing as a dynamic line balancing mechanism. IIE Transactions, 34(4), 847-863.
    Hopp, W., & Van Oyen, M. P., (2004). Agile workforce evaluation: a framework for cross-training and coordination. IIE Transactions, 36(4), 919-940.
    Huq, F., Hensler, D. A., & Mohamed, Z. M., (2001). A simulation analysis of factors influencing the flow time and through-put performance of functional and cellular layouts. Integrated Manufacturing, 12(4), 285-295.
    Jensen, J. B., (2000). The impact of resource flexibility and staffing decisions on cellular and departmental shop performance. European Journal of Operational Research, 127(1), 279-296.
    Jensen, J. B., Malhotra, M. K., & Philipoom, P.R., (1996). Machine dedication and process flexibility in a group technology environment. Journal of Operations Management, 14(1), 19-39.
    Kannan, V. R., & Ghosh, S., (1996). Cellular manufacturing using virtual cells. International Journal of Production Research, 16(1), 99-112.
    Kannan, V. R., & Palocsay, S. W., (1999). Cellular vs process layouts: an analytic investigation of the impact of learning on shop performance. Omega, 27(6), 583-592.
    Kumar, N., & Shanker, K., (2001). Comparing the effectiveness of workload balancing objectives in FMS loading. International Journal of Production Research, 39(5), 843-871.
    Kuula, M., & Stam, A., (1999). Workload balancing in the manufacturing environment: a multicriteria trade-off analysis. International Journal of Production Research, 37(7), 1459-1477.
    McCreery, J. K., & Krajewski, L. J., (1999). Improving the equality of workload assignments in assembly lines environment with learning and forgetting effects. International Journal of Production Research, 37(9), 2031-2058.
    Morris, S. J., & Tersine, R. J., (1990). A simulation analysis of factors influencing the attractiveness of group technology cellular layouts. Mangement Science, 36(12), 1567-1578.
    Noeman, B. A., & Tharmmaphornphilas, W., (2005). Human related issues in manufacturing cell design, implementation, and operation. Computer & Industrial Engineering, 48(2), 507-523.
    Noeman, B. A., Tharmmaphornphilas, W., Needy, K. L., Bidanda, B., & Warner, R. C. (2002). Worker assignment in cellular manufacturing considering technical and human skills. International Journal of Production Research, 40(6), 1479-1492.
    Schultz, K. L., McClain, J. O., & Thomas, L. J., (2003). Overcoming the dark side of worker flexibility. Journal of Operations Management, 21(1), 81-92.
    Sennott, L. I., Van Oyen, M. P., & Iravani, M. R., (2006). Optimal dynamic assignment of a flexible worker on an open production line with specialists. European Journal of Operational Research, 170(2), 541-566.
    Shafer, S. M., & Charnes, J. M., (1993). Cellular versus functional layouts under a variety of shop operating conditions. Decision Science, 24(2), 665-681.
    Shambu, G., & Sureah, N. C., (2000). Performance of hybrid cellular manufacturing systems: A computer simulation investigation. European Journal of Operational Research, 120(2), 436-458.
    Slomp, J., Bokhorst, J. A.C., & Molleman, E., (2005). Cross-training in a cellular manufacturing environment. Computer & Industrial Engineering, 48(3), 609-624.
    Slomp, J., & Molleman, E., (2001). The impact of technological innovations on work design in a cellular manufacturing environment. New Technology, Work, and Employment, 16(3), 152-155.
    Suer, G. A., & Dagli, C., (2005). Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells. Computer & Industrial Engineering, 48(3), 643-655.
    Suresh, N. C., (1991). Partitioning work centres for group technology: insights from an analytical model. Decision Science, 22(3), 772–791.
    Suresh, N. C., (1992). Partitioning work centres for group technology: analytical extension and shop-level simulation investigation.Decision Science, 23(1), 267-290.
    Suresh, N. C., & Gaalman, G. J. C., (2000). Performance evaluation of cellular layouts: extension to DRC system contexts. International Journal of Production Research, 38(17), 4393-4402.
    Suresh, N. C., & Meredith, J. R., (1994). Coping with the loss of pooling synergy in cellular manufacturing systems. Mangement Science, 40(4), 466-483.
    Suresh, N. C., & Slomp, J., (2005). Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC setting. International Journal of Production Research, 43(5), 945-979.
    Treleve, M., (1989). A review of the dual resource constrained system research. IIE Transactions, 21(3), 279-287.
    Van Oyen, M. P., Gel, E. G. S., & Hopp, W. J., (2001). Performance opportunity for workforce agility in collaborative and noncollaborative work systems. IIE Transactions, 33(9), 761-777.
    Description: 碩士
    國立政治大學
    企業管理研究所
    93355053
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0933550531
    Data Type: thesis
    Appears in Collections:[Department of Business Administation] Theses

    Files in This Item:

    File Description SizeFormat
    55053101.pdf185KbAdobe PDF21205View/Open
    55053102.pdf214KbAdobe PDF2676View/Open
    55053103.pdf427KbAdobe PDF2849View/Open
    55053104.pdf326KbAdobe PDF2731View/Open
    55053105.pdf424KbAdobe PDF2833View/Open
    55053106.pdf233KbAdobe PDF2982View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback