English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804270      Online Users : 707
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/34175


    Title: 具有違約風險證券之最適投資組合策略
    Optimal Portfolios with Default Risks ─ A Firm Value Approach
    Authors: 陳震寰
    Chen, Jen-Huan
    Contributors: 張士傑
    Chang, Shih-Chieh
    陳震寰
    Chen, Jen-Huan
    Keywords: 最適投資組合
    信用風險
    違約風險
    彈性
    存續期間
    Optimal portfolios
    credit risk
    default risk
    elasticity
    duration
    Date: 2005
    Issue Date: 2009-09-18
    Abstract: 關於Merton (1969) 最適投資組合策略問題,所考慮之投資情境為:一個將其財富資金安排配置於風險性資產(各類證券)與無風險短期現金部位之投資人,在給定此投資人心目中財富效用函數之前提下,希望事先決定出投資組合之最適投資權重(策略),藉此達成在投資期滿時極大化財富效用之期望值。基於Merton (1974) 公司價值觀點,具有違約風險之證券(公司債與股票)乃是公司價值之衍生性商品,無法以傳統資產配置對股票與債券部位採取現貨方式處理最適投資策略,在此必需同時結合財務工程處理衍生性金融商品計價與避險之技術來解決。本研究利用Kron & Kraft (2003) 彈性求解法來針對市場是否有投資限制、債券提前違約、到期違約及利率隨機與否等假設,基於不同投資組合情境分析來最適投資部位策略。本研貢獻和究創新突破之處在於特別探討公司違約時,債券投資人不再享有全部公司殘值之求償權,此時股東亦享有部份比例之求償權,違約後之公司殘值將由債券投資人與股東兩者比例共分之特殊情境下,對數型態財富效用之投資人對於提前違約風險之接受度高於到期違約風險,若一般情境(股東無任何求償權)則為相反。此外亦特別提供最適成長投資組合之動態避險策略封閉解,藉以提供投資人面臨企業違約風險時應制定之投資決策與動態調整,使本研究臻至週延與實用。
    Under the Merton (1969) optimal portfolio problem, we only consider the specific investor, whose wealth utility follows the type of logarithm function; wants to maximize the expected value of the terminal wealth utility through determine the optimal investment strategy in advance. He divides his wealth into the riskless asset and risky assets such as the money market account and the various-risky securities issued by the corporate.

    Based on the Merton firm value framework (1974), the defaultable securities, such as the corporate bonds and stocks, are the derivatives instruments of the firm value. It will be inappropriate if we deal with this optimal portfolio problem under the original methods. Therefore, we need to handle this optimal asset allocation problem through the pricing, valuation and hedging techniques from the financial engineering simultaneously.

    This study apply the elasticity approach to portfolio optimization (EAPO, Kraft ,2003) to solve the optimal portfolio strategy under various scenarios, such as the market contains the investment constrain or not, intermediate default risks, mature default risk, interest rate risky under the stochastic process.

    The innovation and contribution of this paper are especially breaking the common setting and analysis the optimal-growth-portfolio strategy under the special scenario. In the common setting, as soon as the default event occurs, the residual firm value will be claimed by the corporate bondholders with fully proportion and the stockholder cannot share any residual value. Oppositely, the stockholder will be able to share the residual firm value proportionally with the corporate bondholder together under the so-called special scenario. We found that the investor would have higher acceptance of the premature default risk than the mature default risk in the special scenario. This phenomenon will be reversed under the common scenario.

    Furthermore, in order to make this study more completely and useful, we do not only illustrate the optimal investment strategy but also provide the closed-formed solution of the dynamic hedge strategy of the risky position, composed by the defaultable securities. This could help the optimal-growth-portfolio-oriented investor to make investment decision while they face the firm value downward decreasing.
    Reference: ________________________________________
    [01] Black, F., and J. C. Cox, 1976, Valuing corporate securities: Some effects of bond indenture provisions, Journal of Finance 31: 351-367.
    [02] Black, F.; and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81: 637-654.
    [03] Briys, E., and F. de Varenne, 1997, Valuing risky fixed rate debt: An extension, Journal of Financial and Quantitative Analysis 32: 239-248.
    [04] Geske, R., 1977, The valuation of corporate liabilities as compound options, Journal of Financial and Quantitative Analysis 12: 541-552.
    [05] Hull, J. C., and A. White, 1995, The impact of default risk on the prices of options and other derivative securities, Journal of Banking and Finance 19: 299-322.
    [06] Johnson, H., and R. Stulz, 1987, The pricing of options with default risk, Journal of Finance 42: 267-280.
    [07] Karatzas, I., J. P. Lehoczky., and S. E. Shreve, 1987, Optimal portfolio and consumption decisions for a small investor on a finite horizon, SIAM Journal on Control and Optimization 27: 1157-1186.
    [08] Kraft, H., 2003, The elasticity approach to portfolio optimization, Mathematical Methods of Operations Research (ZOR) 58: 159–182.
    [09] Korn, R., and H. Kraft, 2003, Optimal Portfolios with Defaultable Securities: A Firm Value Approach, International Journal of Theoretical and Applied Finance 6: 793-819.
    [10] Longstaff., and Schwartz, 1995, A simple approach to valuing risky fixed and floating rate debt, Journal of Finance 50: 789-819.
    [11] Merton, R. C., 1969, Lifetime portfolio selection under uncertainty: the continuous case, Reviews of Economical Statistics 51: 247-257.
    [12] Merton, R. C., 1971, Optimal consumption and portfolio rules in a continuous-time model, Journal of Economic Theory 3: 373-413.
    [13] Merton, R. C., 1974, On the pricing of corporate debt: The risk structure of interest rates, Journal of Finance 29: 449-479.
    [14] Saa-Requejo, J., and Santa-Clara, P, 1999, Bond pricing with default risk, Working paper, UCLA.
    [15] Vasicek, O, 1977, An equilibrium characterization of the term structure, Journal of Financial Economics 5: 177-188.
    [16] Harrison, J. M., and D. M. Kreps, 1979, Martingales and arbitrage in multi-period securities markets, Journal of Economic Theory 20: 381-408.
    [17] Harrison, J. M., and S. R. Pliska, 1981, Martingales and Stochastic Integrals in the theory of Continuous Trading, Stochastic Process. Appl. 11: 215-260.
    [18] Ito, K., 1944, Stochastic integral. Proc. Imp. Acad. Tokyo, 20: 519-524.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    93358010
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0933580101
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    58010101.pdf290KbAdobe PDF2830View/Open
    58010102.pdf128KbAdobe PDF2853View/Open
    58010103.pdf333KbAdobe PDF21030View/Open
    58010104.pdf316KbAdobe PDF2910View/Open
    58010105.pdf358KbAdobe PDF21434View/Open
    58010106.pdf352KbAdobe PDF21349View/Open
    58010107.pdf414KbAdobe PDF21599View/Open
    58010108.pdf458KbAdobe PDF21004View/Open
    58010109.pdf448KbAdobe PDF21194View/Open
    58010110.pdf988KbAdobe PDF2964View/Open
    58010111.pdf544KbAdobe PDF21456View/Open
    58010112.pdf333KbAdobe PDF2824View/Open
    58010113.pdf416KbAdobe PDF2907View/Open
    58010114.pdf359KbAdobe PDF2842View/Open
    58010115.pdf357KbAdobe PDF2806View/Open
    58010116.pdf360KbAdobe PDF21293View/Open
    58010117.pdf398KbAdobe PDF2772View/Open
    58010118.pdf380KbAdobe PDF2793View/Open
    58010119.pdf377KbAdobe PDF2751View/Open
    58010120.pdf526KbAdobe PDF21148View/Open
    58010121.pdf429KbAdobe PDF2792View/Open
    58010122.pdf317KbAdobe PDF2846View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback