政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/34172
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 50983900      在线人数 : 989
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/34172


    题名: 確定提撥制下退休基金之最適提撥率與最適資產配置
    作者: 林昆亭
    贡献者: 黃泓智
    林昆亭
    关键词: 確定提撥計畫
    最適投資策略
    下跌風險
    生命週期型態
    defined-contribution plans
    optimal investment strategy
    downside risk
    lifestyle investment strategy
    日期: 2005
    上传时间: 2009-09-18
    摘要: 現行各國的退休金計畫逐漸地由確定給付制轉變為確定提撥制。這表示投資的風險由原本退休金計畫的發起者(雇主)轉移到了參與者(員工)的身上。為了減少每個確定提撥制計畫參與者的投資風險,本文中採用退休時所得替代率為預估的目標,藉由模擬與最適化的方法找到最適投資策略與最適提撥率。

    能反映出時間性的隨機模型在精算科學的領域是日漸重要,本文試著藉由隨機性的變化來估計代替以往精算上各種假設下所求得的負債。本文藉由隨機模擬的方式,得到各種資產在市場上或者是經濟上的價值來建構相關投資標的之報酬率,並利用動態隨機規劃模型去改善財務上避險以及資產負債管理。此外,為了避免模擬分析時間過長的問題,本文採用了情境抽樣的方法去改善電腦模擬分析計算時的效率。

    我們主要得到以下結論:

    (一)確定提撥制下的負債受薪資水準波動的影響,所以此時會持有較
    多的指數連結型債券以反應薪資水準及通貨膨脹的影響。整體投
    資的結果與Vigna & Haberman (2001) 文中的結果及實務上生命
    週期型態(lifestyle)投資方式呈現相同的現象。

    (二)考慮每期下跌風險(downside risk)時,期中的投資可能會偏向
    於投資風險較高的股票。在每年觀察下跌風險的情況下其投資因
    為必須考慮避免每一年的下跌風險,需要比每五年觀察下跌風險
    的情況做風險較大的投資,以達到其目標。

    (三)在本文的調整投資組合策略下,因為調整次數不多,所以在考慮
    交易成本的情況,當交易成本很小時對於整體的最適化資產配置
    與最適化提撥率的影響是很小的。在本文的調整投資組合策略
    下,交易成本的影響只有在交易成本非常大的情況下才能看得出
    來。

    (四)均勻抽樣法抽出的400組情境幾乎可以完全的代替4000組情境,
    其結果可以看出與未抽樣相同的生命週期型態(lifestyle)投資
    方式。而隨機抽樣法的結果雖然也可看出趨勢,但準確性相對於
    均勻抽樣法仍稍嫌不足,並不適合用來代替原先的4000組情境。
    A shift from defined-benefit pension plan towards defined-contribution pension plan is currently popular around the world. This means that a serious investment risk transfers from defined-benefit sponsors to the individual members of defined-contribution plans. In order to reduce the risk of individual DC member, we investigate the methodology of finding the optimal contribution rate and asset allocation to reach a certain target of the retirement replacement rate in this paper.

    Stochastic processes are getting more important to the field of actuarial science. Instead of trying to approximate liabilities by a single deterministic set of actuarial assumption, we seek to take account of market or economic valuation for both assets and liabilities using stochastic simulation. We applied dynamic stochastic programming models to improve financial hedging and asset liability management. Moreover, in order to avoid the problem of time-consuming, we use scenario sampling method to improve the efficiency of computer calculation.

    We draw four conclusions from our investigations:

    (1)We will hold more assets in indexed-linked bonds because
    the pension liability is highly related to the wage-
    index and inflation rate. The optimal investment
    strategy is very like the so called "lifestyle"
    investment strategy.

    (2)When we consider downside risk, we should hold more
    risky equities. The investment strategy is more risky
    when we consider downside risk every year than every 5
    years.

    (3)Under our rebalancing strategy, if the transaction cost
    is small, the influence on the investment strategy and
    contribution rate is small. We can see the influence of
    the transaction cost in a situation that the transaction
    cost is very big only.

    (4)There are almost no different between uniform sampling
    scenarios and original simulation scenarios, so uniform
    sampling scenarios may replace the original simulation
    scenarios perfectly. And random sampling method is
    unsuitable to replace the original simulation scenarios.
    參考文獻: 中文部分
    1.黃泓智、余淸祥、楊曉文、黃彥富(2005),「隨機投資模型與長期負
    債投資避險策略之研究」,證券市場發展季刊,第十七卷,第四期(將
    刊登)(TSSCI)。
    2.吳青峰(2002),「最適資產配置:投資模型建構及基因演算法之應
    用」,國立政治大學風險管理與保險學系碩士論文。
    3.蔡秉寰(2001),「資產配置之動態規劃」,國立政治大學金融系碩士論
    文。
    4.閔志清(1997),「台灣基金資產配置之研究」,國立台灣大學財務金融
    學系碩士論文。
    5.張智星(2000),「MATLAB 程式設計與應用」,清蔚科技出版。
    英文部分
    1.Berketi, A., (1998), "Allowing for insurance companies’
    liabilities in mean - variance models." Ph.D. Thesis, Heriot-
    Watt University.
    2.Brianton, G., (1998), "Portfolio optimization " Risk
    Management and Financial Derivatives: A Guide to the
    Mathematics, 1st edition, Palgrave(trade).
    3.Black, F., and Litterman, (1991), "Asset allocation :Combing
    Investors View with Market Equilbrium", Journal of Fixed
    Income, September.
    4.Boyle, P.P., and Yang, H., (1997), "Asset allocation with
    time variation in expected returns." Insurance mathematics
    and Economics, Vol. 21 Iss.3, p201-218.
    5.Brinson, G.P., and Singer, B.D., and Beebower, G.L.,
    (1991), "Determinants of Portfolio Performance II:An
    Update." Financial Analyst Journal, Vol. 47, Iss. 3, p40-48.
    6.Brennan, M.J., and Schwartz, E.S., and Lagnado, R.,
    (1997), "Strategic asset allocation." Journal of Economic
    Dynamics and Control, 21, p1377-1403.
    7.Carter, J., (1991), "The derivation and application of an
    Australian stochastic investment model" Transactions of the
    Institute of Actuaries of Australia, I, p315-428.
    8.Chang, S.C., (1999), "Optimal Pension Funding Through Dynamic
    Simulations: the Case of Taiwan Public Employees Retirement
    System." Insurance: Mathematics and Economics, 24, 187-199.
    9.Chopra, V.K., and Ziemba, W.T., (1993), "The effect of errors
    in Means ,Variances and Covariances on Optimal portfolio
    Choice" Journal of Portfolio Management, Vol. 19, Iss. 2, p6-
    12.
    10.Donohue, C., and Yip, K., (2003), "Optimal portfolio
    rebalancing with transaction costs" Journal of Portfolio
    Management, Vol. 29, Iss. 4, p49-92.
    11.Edesess, Michael, and Hambrecht, George A.,
    (1980), "Scenario Forecasting: Necessity, Not Choice ",
    Journal of Portfolio Management, Vol. 6, Iss. 3, p10.
    12.Farrell, James L., Jr. (1989), "A Fundamental Forecast
    Approach Superior AssetAllocation. " Financial Analysts
    Journal, Vol. 45, Iss. 3, p32-38.
    13.Fong, H.G., and Fabozzi, F.J., (1988), "Asset Allocation
    Optimization Models" In Arnott, Robert D., Frnak J,
    Fabozzi,eds., Asset allocation :A Handbook of Portfolio
    Policies, Strategies & Tactics, Chicago: Probus.
    14.Gerald W. Buetow Jr., and Ronald Sellers, and Donald
    Trotter, and Elaine Hunt, and Willie A. Whipple Jr.,
    (2002), "The Benefits of Rebalancing." Journal of Portfolio
    Management, Vol. 28, Iss. 2, p23-32.
    15.Hardy, M.R., (1993), "Stochastic simulation in life office
    solvency. " Journal of the Institute of Actuaries,
    (120):p131-152.
    16.Haberman, S., and Sung, J.H., (1994), "Dynamic Approaches to
    Pension Funding" Insurance: Mathematics and Economics, 15,
    p151-162.
    17.Haberman, S., and Vigna, E., (2002), "Optimal Investment
    Strategies and risk measures in defined contribution pension
    schemes." Insurance mathematics and Economics, 31, p35-69.
    18.Hammer,D.A., (1991), "Dynamic Asset Allocation :Strategies
    for the Stock Bond, and Money Markets" John Wiley & Sons,Inc.
    19.Hensel, C.R., and Ezra, D.D., and Ilkiw, J.H., (1991), "The
    Importance of the Asset Allocation Decision." Financial
    Analysts Journal, Vol. 47, Iss. 4, p65-72.
    20.Huang, H.C., (2000), "Stochastic modeling and control of
    pension plans. " Ph.D. Thesis, Heriot-Watt University.
    21.Wang, J.L., (2002), "The Impact of Employer Pension System
    on Retirement Income:the Analysis of the Revolutions in the
    United State and Taiwan." Insurance Issues and Practices,
    Vol. 1, p27-55.
    22.Koskosidis, Y.A., and Duarte, A.M., (1997), "A Scenario-
    Based Approach to Active Asset Allocation." The Journal of
    Portfolio Management, Vol. 23 Iss. 2, p74-85.
    23.Leibowitz, M.L., and Henriksson, R.D., (1988), "Portfolio
    Optimization Within a Surplus Framework." Financial Analysts
    Journal, Vol. 44 Iss. 2, p43-51.
    24.Macdonald, A., (1994), "A Stochastic evaluation of solvency
    valuations for life officies. " PH.D. Thesis, Heriot-Watt
    University.
    25.Markowitz, H.M., (1952), "Portfolio Selection". Journal of
    Finance, March, p77-91.
    26.Plaxco, L.M., and Arnott, R.D., (2002), "Rebalancing a
    Global Policy Benchmark." Journal of Portfolio Management,
    Vol. 28 Iss. 2, p9-22.
    27.Pollin, R., and Schaberg, M., and Baker, D., (2003), "
    Security Transactions Taxes for U.S. Financial Markets "
    Political Economy Research Institute, Eastern Economic
    Review, October 2003.
    28.Sharpe, W. F., (1994), "The Sharpe Ratio." Journal of
    Portfolio Management, Vol. 21, Iss. 1, p49-59.
    29.Tanaka, S., and Inui, K., (1995), "Modelling Japanese
    financial markets for pension ALM simulations" 5th AFIR
    colloquium, p563-584.
    30.Tobin, James, (1996), "Prologue" The Tobin Tax:Coping with
    Financial Volatility, New York: Oxford University Press,
    ix – xviii.
    31.Thomson, R.J., (1994), "A stochastic investment model for
    actuarial use in South Africa" Convention of the Actuarial
    Society of South Africa.
    32.Venables, W.N., and Ripley, B.D., (2002), Modern Applied
    Statistics with S-Plus, 3rd edition, Springer, N.Y., N.Y.
    33.Vigna, E., and Haberman, S., (2001), "Optimal Investment
    Strategy for defined contribution pension schemes."
    Insurance mathematics and Economics, 28, p233-262.
    34.Williams, J.O., (1997), "Maximizing the Probability of
    Achieving Investment Goals" The Journal of Portfolio
    Management, Vol. 24, Iss. 1, p77-82.
    35.Wilkie, A.D., (1986), "A Stochastic Investment Model for
    Actuarial Use." Transactions of the Faculty of Actuaries,
    39, p341-403.
    36.Wilkie, A.D., (1995), "More on a stochastic asset model for
    actuarial use." British Actuarial Jouranl, 1, p777-964.
    37.Yvonne, C., (2002), "Efficient Stochastic Modeling For Large
    and Consolidated Insurance Business:Interest Rate Sampling
    Algorithms." North American Actuarial Journal, Vol.6 Iss. 3,
    p88-103.
    38.Yvonne, C., (2003), " Efficient Stochastic Modeling:From
    Scenario Sampling To Parametric Model Fitting Utilizing ASEM
    as an Exampling." International Professional Development
    Symposium Co-sponsored by Canadian Institute of Actuaries,
    Actuarial Foundation, and Society of Actuaries, Toronto,
    Canada.
    描述: 碩士
    國立政治大學
    風險管理與保險研究所
    92358024
    94
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0923580241
    数据类型: thesis
    显示于类别:[風險管理與保險學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    58024101.pdf11KbAdobe PDF2833检视/开启
    58024102.pdf12KbAdobe PDF2746检视/开启
    58024103.pdf84KbAdobe PDF2825检视/开启
    58024104.pdf67KbAdobe PDF2755检视/开启
    58024105.pdf181KbAdobe PDF21278检视/开启
    58024106.pdf119KbAdobe PDF21248检视/开启
    58024107.pdf93KbAdobe PDF2866检视/开启
    58024108.pdf87KbAdobe PDF2863检视/开启
    58024109.pdf193KbAdobe PDF2952检视/开启
    58024110.pdf87KbAdobe PDF2728检视/开启
    58024111.pdf69KbAdobe PDF21380检视/开启
    58024112.pdf83KbAdobe PDF21188检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈