Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/34020
|
Title: | 信用違約機率之預測─Robust Logitstic Regression |
Authors: | 林公韻 Lin,Kung-yun |
Contributors: | 沈中華 Shen,Chung-hua 林公韻 Lin,Kung-yun |
Keywords: | 違約機率 羅吉斯模型 穩健迴歸 羅吉斯穩健迴歸 營收品質 信用風險模型效力驗證 Probability of Default (PD) Logistic Model Robust Regression Robust Logistic Regression Quality of Revenue Validation Methodologies for Default Risk Models |
Date: | 2004 |
Issue Date: | 2009-09-17 19:06:49 (UTC+8) |
Abstract: | 本研究所使用違約機率(Probability of Default, 以下簡稱PD)的預測方法為Robust Logistic Regression(穩健羅吉斯迴歸),本研究發展且應用這個方法是基於下列兩個觀察:1. 極端值常常出現在橫剖面資料,而且對於實證結果往往有很大地影響,因而極端值必須要被謹慎處理。2. 當使用Logit Model(羅吉斯模型)估計違約率時,卻忽略極端值。試圖不讓資料中的極端值對估計結果產生重大的影響,進而提升預測的準確性,是本研究使用Logit Model並混合Robust Regression(穩健迴歸)的目的所在,而本研究是第一篇使用Robust Logistic Regression來進行PD預測的研究。 變數的選取上,本研究使用Z-SCORE模型中的變數,此外,在考慮公司的營收品質之下,亦針對公司的應收帳款週轉率而對相關變數做了調整。 本研究使用了一些信用風險模型效力驗證的方法來比較模型預測效力的優劣,本研究的實證結果為:針對樣本內資料,使用Robust Logistic Regression對於整個模型的預測效力的確有提升的效果;當營收品質成為模型變數的考量因素後,能讓模型有較高的預測效力。最後,本研究亦提出了一些重要的未來研究建議,以供後續的研究作為參考。 The method implemented in PD calculation in this study is “Robust Logistic Regression”. We implement this method based on two reasons: 1. In panel data, outliers usually exist and they may seriously influence the empirical results. 2. In Logistic Model, outliers are not taken into consideration. The main purpose of implementing “Robust Logistic Regression” in this study is: eliminate the effects caused by the outliers in the data and improve the predictive ability. This study is the first study to implement “Robust Logistic Regression” in PD calculation. The same variables as those in Z-SCORE model are selected in this study. Furthermore, the quality of the revenue in a company is also considered. Therefore, we adjust the related variables with the company’s accounts receivable turnover ratio. Some validation methodologies for default risk models are used in this study. The empirical results of this study show that: In accordance with the in-sample data, implementing “Robust Logistic Regression” in PD calculation indeed improves the predictive ability. Besides, using the adjusted variables can also improve the predictive ability. In the end of this study, some important suggestions are given for the subsequent studies. |
Reference: | 一、英文部分 1. Altman, E. I. (1968), Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy, Journal of Finance 23, 589-609 2. Atkinson, A.C. (1994), Fast Very Robust Methods for the Detection of Multiple Outliers, Journal of the American Statistical Association, 89, 1329-1339. 3. Anthony C. Atkinson and Marco Riani (2001), Regression diagnostics for binomial data from the forward search. 4. Andong Zhu, Michael Ash and Robert Pollin (2002) , Stock Market Liquidity and Economic Growth: A Critical Appraisal of The Levine/Zervos Model, working paper series, number 47, Political Economy Research Institute. 5. Beaver,W.H. (1966), Financial Ratios as Predictors of Failure, Journal of Accounting Supplement , 77-111 6. Black, F. and M. Scholes. (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy, May-Jun, 637-654 7. Blum, M.(1974), Failing company discriminate analysis, Journal of Accounting Research 12, 72-102 8. Booth, P. J. (1983), Decomposition Measures and the Prediction of Financial Failure, Journal of Business Finance and Accounting 10, 67-85. 9. Bahnson, P.R. and J.W. Bartley (1992), The Sensitivity of Failure Prediction Models to Alternative Definitions of Failure, Advances in Accounting, 255-278 10. Deakin, E. B.(1972), A Discriminant Analysis of Predictors of Business Failure, Journal of Accounting Research 10, 167-179 11. Donoho, D.L. and Huber, P.J. (1983), The notion of breakdown point. In Bickel, P.J., Doksum, K.A. and Hodges, J.L. Jr. (eds), A Festschrift for Erich L. Lehmann, 157-184, Belmont, California. Wadsworth. 12. Esteban Flores and Jose Garrido (2001), Robust Logistic Regression for Insurance Risk Classification, working paper 01-64, Business Ecnomics Series13. 13. Jorge R. Sobehart, Sean C. Keenan and Roger M. Stein (2000), Benchmarking Quantitative Default Risk Models: A Validation Methodology, Global Credit Research, Moody’s Investors Service. 14. Jorge R. Sobehart, Sean C. Keenan and Roger M. Stein (2000), Validation Methodologies for Default Risk Models, Moody’s Investors Service. 15. Kaplan, R. S. and G. Urwitz (1979), Statistical Models of Bond Ratings: A Methodological Inquiry, Journal of Business, Vol. 52, Iss. 2; 231-262 16. Levine, Ross and Zervos, Sara (1998), Stock markets, Banks, and Growth, American Economic Review, Vol.88(3), 537-558. 17. Merton, R.C. (1974), On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance, June, 449-470 18. Martin, D. (1977), Earning Warning of Bank Failure: A Logit Regression Approach, Journal of Banking and Finance, Vol.1, 249-276 19. Ohlson,J.T. (1980), Financial Ratios and the Probabilistic Prediction of Bankruptcy, Journal of Accounting Research 18, 109-131 20. Peter J. Rousseeuw and Annick M. Leroy (1987), Robust Regression and Outlier Detection, 1-20. 21. Rousseeuw P.J. (1983), Regression techniques with high breakdown point. The Institute of Mathematical Statistics Bulletin, 12, 155. 22. Rousseuw P.J. (1984), Least median of squares regression. Journal of the American Statistical Association, 79, 871-880. 23. Rousseuw P.J. and Yohai V.J. (1984), Robust regression by means of S-estimators, Robust and Nonlinear Time Series Analysis (Eds) W. H. Franke and R.D. Martin Springer Verlag, New York, 256-272. 24. Roger M. Stein (2002), Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation, Technical Report #30124, Moody’s KMV. 25. Scott, W, R., (1997), Financial Accounting Theory. Ontario: prentice-Hall. Canada Inc. 26. Taffler, R.J. (1983), The Assessment of Company Solvency and Performance Using a Statistical Model, Accounting and Business Research, 295-308. 27. 吳秉勳(2000),「Detection of Outliers with Data Transformation」,國立政治大學統計學系研究所。 28. 呂倩如(2002),「On the CAPM from the Views of Robustness and Longitudinal Analysis」,國立政治大學統計研究所。 29. 范少華(2003),「Robust Diagnostic for the Logistic Regression Model With Incomplete Data」,政治大學統計學系研究所 二、中文部分 1. 王懷德(2002),「KMV模型於國內未上市、未上櫃之公開發行公司之研究」,東吳大學會計研究所碩士論文。 2. 沈中華,「違約機率與博達營收增加」,93年8月24日經濟日報社論。 3. 江欣怡(2003),「企業危機預警模型在台灣的應用與比較」,東吳大學國際貿易學系研究所碩士論文。 4. 何太山(1977),「運用區別分析建立商業放款信用評分制度」,政治大學企業管理研究所未碩士論文。 5. 周培如(2004),「銀行危機預警指標-KMV信用風險模型與財務指標之應用」,國立政治大學經濟學系研究所碩士論文。 6. 吳念芳(2003),「從銀行借款資訊探討公司財務危機」,國立高雄第一科技大學財務管理研究所碩士論文。 7. 邱順南(2003),「台灣銀行業金融預警模型之探討」,嶺東技術學院財務金融研究所碩士論文。 8. 林妙宜(2001),「信用風險之衡量」,國立政治大學金融學系研究所碩士論文。 9. 林宓穎(2001),「上市公司財務危機預警模式之研究」,國立政治大學財政學系研究所碩士論文。 10. 林鴻傑(1996),「建立企業財務危機預警模型之研究-以台灣地區紡織業股票上市公司為例」,大葉大學事業經營研究所碩士論文。 11. 卓怡如(1995),「財務危機預警模型之建立-以上市及未上市公司為例」,台灣大學財務金融研究所碩士論文。 12. 陳建賓(2003),「加入公司治理指標的企業財務危機預測研究:Logistic 模型的應用」,淡江大學財務金融學系研究所碩士論文。 13. 陳明賢(1985),「財務危機預測之計量分析研究」,台灣大學商學研究所碩士論文。 14. 陳肇榮(1983),「運用財務比率預測企業財務危機之實證研究」,政治大學企業管理研所博士論文。 15. 張大成、劉宛鑫、沈大白,中國商銀月刊 91年11月號,「信用評等模型之簡介」。 16. 張宸豪(2002),「以KMV的違約風險衡量模式-EDF評估美國上市公司的違約機率」,元智大學管理研究所碩士論文。 17. 黃逸勤(2001),「穩健迴歸轉換與區域影響分析」,國立政治大學統計研究所碩士論文。 18. 曾素娟(1999),「考慮經濟景氣變動之企業失敗預警模式-台灣上市公司之研究」,國立成功大學企業管理學系研究所碩士論文。 19. 黃文隆(1993),「財務危機預警模式建立預驗證」,東吳大學管理科學研究所碩士論文。 20. 黃小玉(1988),「銀行放款信用評估模式之研究-最佳模式之選擇」,淡江大學管理科學研究所碩士論文。 21. 歐再添(2002),「企業財務危機預測-以產業別建構Logistic預警模型」,國立台灣科技大學企業管理系研究所碩士論文。 22. 潘玉葉(1990),「台灣股票上市公司財務危機預警分析」,淡江大學管理科學研究所博士論文。 |
Description: | 碩士 國立政治大學 金融研究所 92352009 93 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0923520091 |
Data Type: | thesis |
Appears in Collections: | [金融學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|