政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/33973
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51315038      線上人數 : 889
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/33973
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/33973


    題名: 短期利率模型的台灣實證--無母數法
    作者: 方惠蓉
    貢獻者: 廖四郎
    方惠蓉
    關鍵詞: 無母數統計法利率模型
    漂移項函數
    擴散項函數
    核密度函數
    核函數
    帶寬
    日期: 2002
    上傳時間: 2009-09-17 18:58:58 (UTC+8)
    摘要: 在現代資產定價的研究中,短期利率扮演一個很重要的角色。短期利率模型中最重要的一類是連續時間的擴散模型(continuous-time diffusion model)。這些模型有一個特性:假設已知利率的動態過程,亦即對利率模型的漂移項及擴散項作特定函數型態假設,而並無完整的經濟理論說明為何如此設定。我們知道不同的利率模型設定會推導出不同的商品評價公式,因此任意函數型態的模型一旦設定偏誤太大,勢必對評價公式的準確性造成很大的影響。有鑑於此,近幾年來利用無母數統計方法來估計利率模型的文獻與日具增。因為利用無母數統計方法可以減少對利率模型的任意設定。

    基於對短期利率模型任意參數設定的懷疑,以及欲探究台灣短期利率的動態過程究竟為何種型態,因此本文以Stanton(1997)的無母數統計法利率模型,以台灣貨幣市場30天期的商業本票利率資料作實證分析。而為了更清楚了解無母數法利率模型的表現,本文亦採用CKLS (1992)所發展的估計方法,以一般化動差法(Generalized method of moment, GMM)估計九個有參數利率模型,將所得到結果與無母數法的利率模型比較。最後,我們利用估計出的無母數利率模型來建構利率期間結構,並與實際資料作比較。

    本文實證結果發現,台灣短期利率的動態過程不管是漂移項或擴散項函數皆呈現非線性型態,且漂移項函數呈現負斜率的均數回歸(mean reverting)現象,而擴散項函數大致是隨利率水準愈大而其數值亦愈大。因此若以非線性、具有均數回歸且擴散項是遞增的函數式來設定利率模型的參數,應該較能刻劃台灣短期利率動態過程。另外,從有參數模型的實證結果發現,漂移項或擴散項函數,只要其中一項設定有誤,不僅會使該項的預測能力變差,亦連帶會影響另一項的預測能力,進而也會影響模型的整體表現。這意味著以無母數方法來估計利率模型有其必要性。最後,我們利用無母數法利率模型所估計的利率期間結構與實際的資料比較,發現估計結果還算不錯。
    參考文獻: 【中文部分】
    [1] 林炳輝、葉仕國,台灣金融市場跳躍—擴散利率模型之實證研究,Journal of Financial Studies Vol.6 No.1, July 1998, pp. 77-106。
    [2] 林長青、洪茂蔚、管中閔,台灣短期利率的動態行為:狀態轉換模型的應用,
    經濟論文,30:1, 2002, pp. 29-55。
    [3] 中央銀行年報,民國79年至民國91年。
    [4] 葉仕國,整合性利率期限結構模型之實證研究,民國86年。
    【英文部分】
    [1] Aït-Sahalia, Yacine, “Nonparametric Pricing of Interest Rate Derivative Securities”, Econometrica, May 1996a, Vol. 64. No. 3, pp. 527-560.
    [2] Aït-Sahalia, Yacine, “Testing Continuous-Time Models of the Spot Interest Rate”, The Review of Financial Studies, Spring 1996b, Vol 9, No. 2, pp. 385-426.
    [3] Backus, David K., Silverio Foresi, and Stanley E. Zin, “Arbitrage opportunities in arbitrage-free models of bond pricing”, working paper, 1995, New York University.
    [4] Bandi, Federico M., Thong H. Nguyen, “On The Functional Estimation of Jump Diffusion Models”, working paper, February 5, 2001.
    [5] Boudoukh, Jacob, Matthew Richardson, Richard Stanton and Robert F. Whitelaw,
    “A Multifactor, Nonlinear, Continuous-Time Model of Interest Rate Volatility”, working paper, June 17, 1999.
    [6] Chan, K. C., G. Andrew Karolyi, Francis A. Longstaff, and Anthony B. Sanders, “An Empirical Comparison of Alternative Models of The Short-Term Interest Rate”, The Journal of Finance, July 1992, Vol. XLVII. No. 3, pp. 1209-1227.
    [7] Conley, T., L. Hansen, E. Luttmer and J. Scheinkman, “Short-Term Interest Rates as Subordinated Diffusions”, Review of Financial Studies 10, 1997, pp. 525-577.
    [8] Cox, John C., Jonathan E. Ingersoll, Jr., and Stephen A. Ross, “A Re-examination of Traditional Hypotheses about The Term Structure of Interest Rates”, Journal of Finance 36, 1981, pp. 769-799.
    [9] Cox, John C., Jonathan E. Ingersoll, Jr., and Stephen A. Ross, “A Theory of The Term Structure of Interest Rates”, Econometrica 53, 1985, pp. 385-467.
    [10] Epanechnikov, V. A., “Nonparametric estimates of multivariate probability density”, Theory of Probability and Applications 14, 1969, pp. 153-158.
    [11] Fabozzi, Frank J, “Interest rate, term structure, and valuation modeling”, Hoboken, N.J. : Wiley, c2002.
    [12] Fama, Eugene F., “Term Premiums in Bond Returns”, Journal of Financial Economics 13, 1984, pp. 529-546.
    [13] Greene, William H., “Econometric Analysis”, New Jersey: Prentice Hall, Inc., 2000, 4th edition.
    [14] Hansen, Lars Peter, “Large sample properties of generalized method of moments estimators”, Econometrica 50, 1982, pp.1029-1054.
    [15] Hansen, Lars Peter, and Jose" A. Scheinkman, “Back to the future: Generating moment implications for continuous-time Markov process”, Econometrica 63, 1995, pp.767-804.
    [16] Hong, Yongmiao, Haitao Li and Feng Zhao, “Out-of-Sample Performance of Spot Interest Rate Models”, working paper, March 2002.
    [17] Johannes M., “Jump in Interest Rates: A Nonparametric approach”, working paper, 2000.
    [18] Krylov, N.V., “Introduction to the Theory of Random Process”, Rhode Island: American Mathematical Society”, 2002.
    [19] Künsch, H. R., “The Jackknife and The Bootstrap for General Stationary Observations”, Annals of Statistics 17, 1989, pp. 1217-1241.
    [20] Lamoureux, Christopher G. and H. Douglas Witte, “Empirical Analysis of the Yield Curve: The Information in the Data Viewed through the Window of Cox, Ingersoll, and Ross”, The Journal of Finance, June 2002, Vol. LVII. No. 3, pp. 1479-1519.
    [21] Litterman, R., and J. A. Scheinkman, "Common Factors Affecting Bond Returns." Journal of Fixed Income 1, 1991.
    [22] Lo, Andrew W., and Jiang Wang, “Implementing option pricing models when asset returns are predictable”, Jouranl of Finance 50, 1995, pp.87-129.
    [23] Longstaff, Francis A. and Eduardo S. Schwartz, “Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model”, The Journal of Finance, September 1992, Vol. XLVII. No. 4, pp. 1259-1282.
    [24] Pagan, A., and Aman Ullah, ‘Nonparametric Econometrics”, New York: Cambridge University Press, 1999.
    [25] Pfann, Gerard A., Peter C. Schotman, and Rolf Tschernig, “Nonlinear Interest Rate Dynamics and Implications for The Term Structure”, Journal of Econometrics 74, 1996, pp. 149-176.
    [26] Pritsker, M., “Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models”, The Review of Financial Studies, Fall 1998, Vol 11, No. 3, pp. 449-487.
    [27] Scott, David W., “Multivariate Density Estimation: Theory, Practice and Visualization”, John Wiley, New York, 1992.
    [28] Stanton, R., “A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk”, The Jouranl of Finance, December 1997, Vol. LII, No 5, pp. 1973-2002.
    [29] Vasicek, Oldrich, “An Equilibrium Characterization of The Term Structure”, Journal of Financial Economics 5, 1997, pp. 177-188.
    描述: 碩士
    國立政治大學
    金融研究所
    90352001
    91
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0090352001
    資料類型: thesis
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    35200101.pdf5KbAdobe PDF2759檢視/開啟
    35200102.pdf7KbAdobe PDF2824檢視/開啟
    35200103.pdf11KbAdobe PDF2716檢視/開啟
    35200104.pdf13KbAdobe PDF2796檢視/開啟
    35200105.pdf10KbAdobe PDF2780檢視/開啟
    35200106.pdf20KbAdobe PDF2924檢視/開啟
    35200107.pdf43KbAdobe PDF21806檢視/開啟
    35200108.pdf83KbAdobe PDF21279檢視/開啟
    35200109.pdf51KbAdobe PDF2892檢視/開啟
    35200110.pdf59KbAdobe PDF21098檢視/開啟
    35200111.pdf20KbAdobe PDF2754檢視/開啟
    35200112.pdf14KbAdobe PDF21184檢視/開啟
    35200113.pdf79KbAdobe PDF21150檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋