Reference: | 1. Bachelier, La Th´oerie de la Sp´eculation [Ph.D. thesis in mathematics], (1900), Ann. Sci. Ecole Norm. Super., S´er. 3, 17, 21. 2. Backus, D.K. and S.E. Zin, (1993), “long-memory inflation uncertainty: Evidence from the term structure of interest rates.” Journal of Money, Credit and Banking 25, 681-700. 3. Baillie, R.T., (1996), “Long-memory processes and fractional integration in econometrics.” Journal of Econometrics 73, 5-5 4. Baillie, R.T., C.-F. Chung, and M.A. Tieslau,( 1995), Analyzing inflation by the fractional integrated ARFIMA-GARCH model. Journal of Applied Econometrics 11, 23-40. 5. Beran, J., (1994), “Statistics for Long-Memory Processes.” Chapman & Hall. 6. Black, F., and M. Scholes, (1972) ”The Valuation of Option Contracts and a Test of Market Efficiency,” Journal of Finance, 27 - 2, May, 399 - 418. 7. Black, F., and M. Scholes, (1973) “The pricing of options and corporate liabilities”, Journal of Political Economy , vol.81:3,637-54. 8. Costa R. L. and Vasconcelos G. L. (2003), Physica A 329, 231. 9. Di Matteo T., Aste T., M. Dacorogna M., Physica A 324, 183 (2003); Cond-Mat preprint 0302434, 2003. 10. Diebold, F.X. and G.D. Rudebusch, (1989), “Long-memory and persistence in aggregate output.” Journal of Monetary Economics 24, 189-209. 11. Embrechts, Paul and Makoto Maejima. (2002), “Selfsimilar Processes.” Princeton University Press. 12. Fama E. F. (1965), “Tha Behavior of Stock-Market Prices,” The Journal of Business of the University of Chicago, 38, no.1 13. Fama E. F. (1970), “Efficient capital market: A review”, J. Finance 383-417 14. Fleming, J., (1998), "The quality of market volatility forecasts implied by S&P100 index options prices", Journal of Empirical Finance, vol.5, 317-345. 15. Grant, D., G. Vora, and D. Weeks, (1996), "Simulation and the Early-Exercise Option Problem," Journal of Financial Engineering, vol.5(3), 211-227. 16. Grau-Carles P. (2000), Physica A , 287-396. 17. Harrison, M. and D. Kreps, (1979), “Martingales and Multiperiod Securities Markets”, Journal of Economic Theory, vol.20, 381-408 18. Hassler, U. and J. Wolters, (1995), “Long-memory in inflation rates: International evidence.” Journal of Business and Economic Statistics, vol.13, 37-45. 19. Hu, Y. and Øksendal, B (2000), “Fractional white noise calculus and applications to finance”, Preprint, University of Oslo. 20. Hurst, H. (1951), “Long term storage capacity of reservoirs”, Transactions of the American Society of Civil Engineers. Vol.116, 770-790. 21. Jorion, P., (1995), “Predicting volatility in the foreign exchange market”, Journal of Finance. vol.50, 507-528 22. Lo, A.W., (1991), “Long-term memory in stock market prices.” Econometrica, vol.59, 1279-1313. 23. Mandelbrot B. B., (1963), J. Business(Chicago), vol.36, 394 24. Mandelbrot, B. B. and Hudson, R. L. (2004). “The Behavior of Markets: A Fractal View of Risk, Ruin and Reward.” Basic Books, New York, NY. 25. Mandelbrot, B.B., and H.W. Taylor, (1967), “On the distributions of stock price differences". Operations Research., vol.15, 1057-1062. 26. Mandelbrot B.B. and J. W. Van Ness, (1968), SIAM Review 10, 422-437. 27. Mandelbrot, B.B., (1971),”A Fast Fractional Gaussian Noise Generator”, Water Resources Research, 7, 543-553. 28. Mandelbrot B. B., (1997) “Fractals and scaling in finance” Springer, New York, 29. Mantegna R. and H. E. Stanley, (2000), “An Introduction to Econophysics”,Cambridge Univ. Press, Cambridge. 30. Matacz A., (2000), Int. J. Theor. Appl. Financ. 3, 143-160. 31. Miranda L. C. and R. Riera, (2001), Physica A 297, 509-520. 32. Necula, Ciprian (2002), “Option Pricing in a Fractional Brownian Motion Environment”, Draft, Academy of Economic Studies, Bucharest, Romania. 33. Osborne, M.F.M. (1959), “Brownian Motion in The Stock market.”Operations Research. vol. 7, 145-173. 34. Peng, C.-K., S.V. Buldyrev, S. Havlin, M. Simons, and H.E. Stanley, 1994, Goldberger AL., “Mosaic organization of DNA nucleotides”, Physical Review E49, 1685-1689. 35. Peters E. E.,(1991), “Chaos and order in capital markets”, Wiley, New York. 36. Peters E. E.,(1994), “Fractal Market Analysis: Applying Chaos Theory to Investment and Economics”, Wiley, New York. 37. Razdan, A. (2002)., “Scaling in the Bombay stock exchange index.” ramana-Journal of physics, Vol. 58, No. 3, March 2002, p. 537-544 38. Rydberg, T. (1997), “Why Financial Data are Interesting to Statisticians”, Centre for Analytical Finance, Aarhus UniversityWorking Paper 5. 39. Samuelson, P.A. (1964). “Rational Theory of Warrant Pricing. In The Random character of Stock Market Prices”, Ed. P. Cootner, pp 506-532, Cambridge, MIT Press. 40. Schoutens W., (2003), “L´evy Processes in Finance: Pricing Financial Derivatives”, Wiley. 41. Shea, G.S., (1991), “Uncertainty and implied variance bounds in long-memory models of the interest rate term structure.” Empirical Economics, vol. 16, 287-312. 42. Shiryaev A. N., (1999), “Essentials of Stochastic Finance: Facts, Models,Theory, World Scientific”, Singapore. 43. Teverovsky, V., M.S. Taqqu, and W. Willinger, (1999), “A critical look to Lo’s modified R/S statistics.” Journal of Statistical Planning and Inference, vol. 80, 211-227. 44. Vandewalle N., Ausloos M., (1997), Physica A 246-454. 45. Wiener N., J. (1923), Math. Phys. Math. 2, 131. |