English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51959360      Online Users : 375
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/33918
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/33918


    Title: A study of learning models for analyzing prisoners` dilemma game data
    囚犯困境資料分析之學習模型研究
    Authors: 賴宜祥
    Lai, Yi Hsiang
    Contributors: 余清祥
    楊春雷

    Jack Yue, Ching-Syang
    Yang, Chun-Lei

    賴宜祥
    Lai, Yi Hsiang
    Keywords: Game learning model
    Reinforcement learning
    Attraction
    Prisoners` dilemma
    Belief learning
    Date: 2004
    Issue Date: 2009-09-17 18:48:24 (UTC+8)
    Abstract:   人們如何在重覆的囚犯困境賽局選擇策略是本文探討的議題,其中的賽局學習理論就是預測賽局的參與者(player)會選擇何種策略。本文使用的資料包括3個囚犯困境的實驗,各自有不同的實驗設定及配對程序,參加者都是政治大學的大學部學生,我們將使用這些資料比較不同的學習模型。除了常見的3個學習模型:增強學習模型(Reinforcement Learning model)、信念學習模型(Belief Learning model)及加權經驗吸引模型(Experience-Weighted Attraction model),本文也提出一個延伸的增強學習模型(Extended reinforcement learning model)。接著將分析劃為Training (in-sample)及Testing (out-sample),並比較各實驗間或模型間的結果。
      雖然延伸增強學習模型(Extended reinforcement learning model)較原始的增強學習模型(Reinforcement learning model)多了一個參數,該模型(Extended reinforcement learning model)在Training(in-sample)及Testing(out-sample)表現多較之前的模型來得些許的好。
    How people choose strategies in a finite repeated prisoners’ dilemma game is of interest in Game Theory. The way to predict which strategies the people choose in a game is so-called game learning theory. The objective of this study is to find a proper learning model for the prisoners’ dilemma game data collected in National Cheng-Chi University. The game data consist of three experiments with different game and matching rules. Four learning models are considered, including Reinforcement learning model, Belief learning model, Experience Weighted Attraction learning model and a proposed model modified from reinforcement learning model. The data analysis was divided into 2 parts: training (in-sample) and testing (out-sample).
    The proposed learning model is slightly better than the original reinforcement learning model no matter when in training or testing prediction although one more parameter is added. The performances of prediction by model fitting are all better than guessing the decisions with equal chance.
    Reference: Andreoni, J. and J. H. Miller (1993): “Rational Cooperation in the Finitely Repeated Prisoner’s Dilemma: Experimental Evidence,” Economic Journal, 103, 570-585.
    Anderson, S., A. de Palma, and J. –F. Thisse (1992): Discrete Choice Theory of Product Differentiation. Cambridge: MIT Press.
    Ben-Akiva, M., and S. Lerman (1985): Discrete Choice Analysis: Theory and Application to Travel Demand. Cambridge: MIT Press.
    Browin, G. (1951): “Iterative solution of games by fictitious play,” in Activity Analysis of Production and Allocation. New York: John Wiley & Sons.
    Bush, Robert, and Frederick Mosteller. 1995. Stochastic Models for Learning. New York: Wiley.
    Camerer, C. F. and T.-H. Ho (1998): “EWA learning in games: probability form, heterogeneity, and time variation,” Journal of Mathematical Psychology, 42, 305-326.
    Camerer, C. F. and T.-H. Ho (1999b). Experience-weighted attraction learning in normal-form games. Econometrica, 67, 827-74.
    Cheung, Y. W., and D. Friedman (1997) “Individual learning in normal form games: som laboratory results,” Game and Economic Behavior, 19, 46-76.
    Copper, R., D. Dejong, R. Forsythe, and T. Ross (1996): “Cooperation Without Reputation: Experimental Evidence from Prisoner`s Dilemma Games,” Games and Economic Behavior, 12, 187-218.
    Cournot, A. (1960): Recherches sur les Principles Mathematiques de la Theories des Richesses. Translated into English by N. Bacon as Researches in the Mathematical Principles of the Theory of Wealth. London: Haffner.
    Erev, Ido, and Alvin E. Roth. (1998): Predicting how people play games: Reinforcement learning in experimental games with unique, mixed-strategy equilibria. American Economic Review, 88, 848-81.
    Friendman, D. (1996): “Equilibrium in Evolutionary Games: Some Experimental Results,” Economic Journal, 106:434, 1-25.
    Fudenberg, D., and D. K. Levine (1995): “Consistency and cautious Fictitious play,” Journal of Economic Dynamics and Control, 19, 1065-1090.
    Fudenberg, D., and D. K. Levine (1998): Theory of Learning in Games. Cambridge: MIT Press.
    Herrnstein, J. R. (1970): “On the law of effect,” Journal of Experimental Analysis of Behavior, 13, 342-366.
    Ho, T-H., and K. Weigelt (1996): “Task complexity, equilibrium selection, and learning: an experimental study,” Management Science, 42, 659-679.
    Kandori, M. (1992): “Social Norms and Community Enforcement,” Review of Economic Studies, 59, 63-80.
    McAllister, P. H. (1991): “Adaptive approaches to stochastic programming,” Annals of Operations Research, 30, 45-62.
    McKelvey, R. D., and T. R. Palfrey (1995): “Quantal response equilibria for normal form games,” Games and Economic Behavior, 10, 6-38.
    Mookerjee, D., and B. Sopher (1994): “Learning behavior in an experimental matching pennies game,” Games and Economic Behavior, 7, 62-91.
    Roth, A., and I. Erev (1995): “Learning in extensive-form games: experimental data and simple dynamic models in the intermediate term,” Games and Economic Behavior, 8, 164-212.
    Selten, R. and R. Soecker (1986): “End Behavior in Sequences
    of Finite Prisoners’ Dilemma Supergames,” Journal of Economic
    Behavior and Organization, 7, 47-70.
    Thorndike, E. L. (1911): Animal intelligence. New York: Macmillan.
    Description: 碩士
    國立政治大學
    統計研究所
    92354007
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0923540071
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    54007101.pdf72KbAdobe PDF21036View/Open
    54007102.pdf98KbAdobe PDF21023View/Open
    54007103.pdf87KbAdobe PDF21122View/Open
    54007104.pdf41KbAdobe PDF2822View/Open
    54007105.pdf46KbAdobe PDF2899View/Open
    54007106.pdf231KbAdobe PDF21081View/Open
    54007107.pdf89KbAdobe PDF21165View/Open
    54007108.pdf87KbAdobe PDF21032View/Open
    54007109.pdf45KbAdobe PDF2931View/Open
    54007110.pdf47KbAdobe PDF21081View/Open
    54007111.pdf54KbAdobe PDF2971View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback