English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113451/144438 (79%)
Visitors : 51284270      Online Users : 858
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/33912
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/33912


    Title: 順序尺度資料間之相關性研究
    Authors: 廖俊嘉
    Contributors: 江振東
    廖俊嘉
    Keywords: 順序尺度
    皮爾森相關係數
    多序類相關係數
    ordinal-scale
    Pearson correlation coefficient
    Polychoric correlation coefficient
    Date: 2002
    Issue Date: 2009-09-17 18:47:35 (UTC+8)
    Abstract: 摘要
    皮爾森相關係數通常作為描述區間尺度變數間相關性的參考指標,然而在社會科學領域中,由於資料多數以順序尺度的形式呈現,因此藉由傳統的皮爾森相關係數來描述順序尺度資料間的相關性通常會導致某種程度的誤差。儘管如此,以往的文獻多數傾向支持以等距離分數來取代順序尺度資料,並直接計算皮爾森相關係數。藉由模擬實驗的結果,我們發現這樣的作法並非在所有情況下都合理。
    此外本研究中也對多序類相關係數進行探討。就表示順序變數間相關性的準確程度而言,多序類相關係數明顯優於利用等距離分數來計算皮爾森相關係數的方法;但若以操作上的便利程度而言,後者仍具有其優勢。

    關鍵字:順序尺度、皮爾森相關係數、多序類相關係數。
    Abstract
    Pearson correlation coefficient is typically used to describe the correlation between two interval-scaled variables. In social science, however, most of the data are represented in ordinal-scale, and hence describing the correlation between two ordinal-scaled variables in terms of Pearson correlation coefficient would inevitably result in certain errors. Though the practice is deemed acceptable and generally supported in literatures, we found, through intensive simulations, that it should be executed with care.
    Polychoric correlation coefficient was also investigated. In order to describe the correlation between two ordinal-scaled variables, we found, in terms of the degree of accuracy, that Polychoric correlation coefficient is definitely better than Pearson correlation coefficient with equal-distance scores. Pearson correlation coefficient, on the other hands, is much easier to calculate, and should not be totally ignored.

    Key words:Ordinal-scale、Pearson correlation coefficient、Polychoric correlation coefficient。
    Reference: 參考文獻
    Babakus,E. 1985. The sensitivity of maximum likelihood factor analysis given violations of interval scale and multivariate normality. Unpublished PhD dissertation. The University of Alabama.
    Bollen,K.A. & K.H. Barb. 1981. Pearson’s R and coarsely categorized measures. American Sociological Review 46:232-239.
    Brown,M.B. & Bendetti,J.K. 1977. On the mean and variance of the tetrachoric correlation coefficient. Psychometrika 42:347-355.
    Joreskog,K.G. 1994. On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika 59:381-389.
    Kirk,D.B. 1973. On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. Psychometrika 38:259-268.
    Labovitz,S. 1967. Some observations on measurement and statistics. Social Forces  46:151-160.
    Labovitz,S. 1970. The assignment of numbers to rank order categories. American Sociological Review 35:515-524.
    Labovitz,S. 1971. In defense of assigning numbers to rank. American Sociological Review 35:521-522.
    Mayer,L.S. 1970. Comment on the assignment of numbers to rank order categories. American Sociological Review 35:916-917.
    O’Brien,R.M. 1979. The use of pearson’s R with ordinal data. American Sociological Review 44:851-857.
    Olsson,U. 1979. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 44:443-460.
    Tallis,G.M. 1962. The maximum likelihood estimation of correlation form contingency tables. Biometrics 18:342-353.
    Vargo,L.G. 1971. Comment on the assignment of numbers to rank order categories. American Sociological Review 35:517-518.
    Description: 碩士
    國立政治大學
    統計研究所
    90354001
    91
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0903540011
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    54001101.pdf62KbAdobe PDF21053View/Open
    54001102.pdf49KbAdobe PDF2834View/Open
    54001103.pdf68KbAdobe PDF2906View/Open
    54001104.pdf97KbAdobe PDF21052View/Open
    54001105.pdf65KbAdobe PDF2847View/Open
    54001106.pdf104KbAdobe PDF22101View/Open
    54001107.pdf151KbAdobe PDF21665View/Open
    54001108.pdf301KbAdobe PDF225058View/Open
    54001109.pdf292KbAdobe PDF2903View/Open
    54001110.pdf181KbAdobe PDF21844View/Open
    54001111.pdf80KbAdobe PDF21095View/Open
    54001112.pdf94KbAdobe PDF2876View/Open
    54001113.pdf750KbAdobe PDF21337View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback