Reference: | [1]Amin, R. W. and Miller, R. W. (1993), “A Robustness Study of X-bar Charts with Variable Sampling Intervals,” Journal of Quality Technology 25, 36-44. [2]Chen, G. and Cheng, S. W. (1998), “Max Chart: Combining X-bar Chart and S Chart,” Statistic Sinica 8, 263-271. [3]Chengalur, I. N., Arnold, J. C. and Reynolds, M. R., JR. (1989), “Variable Sampling Intervals for Multiparameter Shewhart Charts,” Communications in Statistics - Theory and Methods 18, 1769-1792. [4]Cinlar, E. (1975), Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, N.J. [5]Constable, G. K., Cleary, M. J., Tickel, C. and Zhang, G. X. (1988), “Use of Cause-Selecting Charts in the Auto Industry,” ASQC Quality Congress Transactions. American Society for Quality Control, 597-602. [6]Costa, A. F. B. (1994), “ X-bar Charts with Variable Sample Size,” Journal of Quality Technology 26, 155-163. [7]Costa, A. F. B. (1997), “ X-bar Charts with Variable Sample Size and Sampling Intervals,” Journal of Quality Technology 29, 197-204. [8]Costa, A. F. B. (1998), “Joint X-bar and R Charts with Variable Parameters,” IIE Transactions 30, 505-514. [9]Costa, A. F. B. (1999a), “Joint X-bar and R Charts with Variable Sample Size and Sampling Intervals,” Journal of Quality Technology 31, 387-397. [10]Costa, A. F. B. (1999b), “ X-bar Charts with Variable Parameters,” Journal of Quality Technology 31, 408-416. [11]Daudin, J. J. (1992), “Double Sampling X-bar Charts,” Journal of Quality Technology 24, 78-87. [12]Fiocca, A. (1988), Some unpublished works of Ludovico Ferrari (Italian), Boll. Storia Sci. Mat. 8 (2), 239-305. [13]IMSL (1991), Users Manual, Math/Library, Vol.2, IMSL, Inc., Houstin, Texas. [14]Kang, L. and Albin, S. L. (2000), “On-Line Monitoring When the Process Yields a Linear Profile,” Journal of Quality Technology 32, 418-426. [15]Mandel, B. J. (1969), “The Regression Control Chart,” Journal of Quality Technology 1, 1-9. [16]Prabhu, S. S., Montgomery, D. C. and Runger, G. C. (1994), “A Combined Adaptive Sample Size and Sampling Interval X-bar Control Scheme,” Journal of Quality Technology 26, 164-176. [17]Prabhu, S. S., Runger, G. C. and Keats, J. B. (1993), “An Adaptive Sample Size X-bar Chart,” International Journal of Production Research 31, 2895-2909. [18]Reynolds, M. R., JR. (1989), “Optimal Variable Sampling Interval Control Charts,” Sequential Analysis 8, 361-379. [19]Reynolds, M. R., JR. (1995), “Evaluating Properties of Variable Sampling Interval Control Charts,” Sequential Analysis 14, 59-97. [20]Reynolds, M. R., JR. (1996), “Variable-Sampling-Interval Control Charts with Sampling at Fixed Times,” IIE Transactions 28, 497-510. [21]Reynolds, M. R., JR., Amin, R. W., Arnold, J. C. and Nachlas, J. A. (1988), “ X-bar Charts with Variable Sampling Intervals,” Technometrics 30, 181-192. [22]Reynolds, M. R., JR. and Arnold, J. C. (1989), “Optimal One-Sized Shewhart Control Charts with Variable Sampling Intervals,” Sequential Analysis 8, 51-77. [23]Reynolds, M. R., JR., Arnold, J. C. and Baik, J. W. (1996), “Variable Sampling Interval X-bar Charts in the Presence of Correlation,” Journal of Quality Technology 28, 12-30. [24]Runger, G. C. and Montgomery, D. C. (1993), “Adaptive Sampling Enhancements for Shewhart Control Charts,” IIE Transactions 25, 41-51. [25]Runger, G. C. and Pignatiello, J. J., JR. (1991), “Adaptive Sampling for Process Control,” Journal of Quality Technology 23, 135-155. [26]Tagaras, G. (1998), “A Survey of Recent Developments in the Design of Adaptive Control Charts,” Journal of Quality Technology 30, 212-231. [27]Wade, M. R. and Woodall, W. H. (1993), “A Review and Analysis of Cause-Selecting Control Charts,” Journal of Quality Technology 25, 161-169. [28]Yang, S. (2005), “Dependent Processes Control for Over-adjusted Means,” International Journal of Advanced Manufacturing Technology, 109-116. [29]Yang, S. and Su, H. (2006), “Controlling-dependent Process Steps Using Variable Sample Size Control Charts,” Applied stochastic model in business and industry, Vol. 22, 503-517. [30]Yang, S. and Su, H. (2007a), “Adaptive Sampling Interval for Two Dependent Process Steps Control,” International Journal of Advanced Manufacturing Technology, Vol. 31, 1169-1180. [31]Yang, S. and Su, H. (2007b), “Adaptive Control Scheme for Dependent Process Steps,” International Journal of Loss Prevention and Industrial Process, Vol. 20, 15-25. [32]Yang, S. and Yang, C. (2006), “An Approach to Controlling Two Dependent Process Steps with Autocorrelated Observations,” International Journal of Advanced Manufacturing Technology, Vol. 29, 170-177. [33]Yang, S. and Chen, W. (2007a), “Controlling Incorrect Adjustment Processes Using Optimum VSI Control Charts,” International Statistical Conference, ISI 56, Lisbon, Portugal. [34]Yang, S. and Chen, W. (2007b), “Variable Sampling Interval Control Charts,” International Conference of Multiple Decision Theory, in honor of Dr. Den-Yung Hwang, Taiwan. [35]Zhang, G. X. (1984), “A New Type of Control Charts and a Theory of Diagnosis with Control Charts,” World Quality Congress Transactions. American Society for Quality Control, 175-185. |