政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/33909
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50966875      Online Users : 945
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/33909


    Title: 電腦模擬在生育、死亡、遷移及人口推估之應用
    An Application of simulation in projecting fertility, mortality, migration and population
    Authors: 李芯柔
    Lee, Hsin Jou
    Contributors: 余清祥
    Jack C. Yue
    李芯柔
    Lee, Hsin Jou
    Keywords: 隨機人口推估
    小區域人口推估
    人口變動要素合成法
    拔靴法
    電腦模擬
    遷移模型
    Stochastic Projection
    Small Area Population Projection
    Cohort Component
    Block Bootstrap
    computer simulation
    Migration Model
    Population projection
    Date: 2007
    Issue Date: 2009-09-17 18:47:12 (UTC+8)
    Abstract: 人口政策的制定需要人口推估作基礎。近年世界各國人口推估逐漸從專家意見推估走向機率推估,常見的機率推估分成三大類,隨機推估、模擬情境、推估誤差三種,本文所使用的人口推估方法為隨機推估法結合生育率之模擬情境方法,在人口變動要素組合法 (Cohort Component Method) 之下輔以電腦模擬的區塊拔靴法 (Block Bootstrap),針對台灣地區與台灣北、中、南、東四地區進行人口推估。另外,本文試圖在隨機模型人口推估中加入遷移人口之考量,以期針對遷移人口在數量與其影響上都能有較深入的了解,比較區塊拔靴法與經建會推估之差異後發現遷移之考量確實會影響人口推估之結果。<br>針對與全區相符的小區域人口推估,本文亦提出可使得推估一致的方法,但其缺點為限制了生育、死亡人口要素之變動性。此推估在總數上與隨機推估方法差異不大,但在人口結構上則有明顯的差別,此差別可能是來自於死亡率在四區間差異造成。
    Population projection is important to policy making, and only with accurate population projection can the government achieve suitable policy planning and improve the welfare of the society. The most popular and well-known population
    projection method is the Cohort Component method, proposed since 1930’s. The trends of future fertility, mortality and migration are required, in order to apply the cohort component method. Currently in Taiwan, these trends are determined according to experts’ opinions (or scenario projection) and three future scenarios are assumed: high, median and low scenarios. One of the drawbacks in applying
    experts’ opinions is that the projection results of these three scenarios do not have the meaning in probability.<br>To modify the expert’ opinions and let the projection results carry the meaning in probability, many demographic researchers have developed stochastic projection methods. The proposed stochastic methods can be categorized into three groups: stochastic forecast, random scenario and ex post methods. In this study, we introduce these stochastic methods and evaluate the possibility of applying the methods in projecting the population in Taiwan.<br>In this study we use block bootstrap, a computer simulation and stochastic forecast method, to determine the trends of future fertility, mortality and migration in Taiwan, and combine it with the cohort component method for population projection in Taiwan. We compare the projection results with those from the Council for Economic Planning and Development (a scenario projection). We found that the block bootstrap is a possible alternative to the scenario projection in population projection, and the numbers of migration is small but have a non-ignorable influence
    on the future population. However, we also found that the block bootstrap alone might not be appropriate for population projection in small areas.
    Reference: 中文部份
    中華民國內政部統計資訊網,http://www.moi.gov.tw/W3/stat/。
    中華民國臺灣民國 95 年至民國 140 年人口推計,行政院經濟建設委員會人力
    規劃處,http://www.cepd.gov.tw/index.jsp。
    中華民國台灣地區民國 84 年至民國 140 年人口推計,行政院經濟建設委員
    會,http://www.cepd.gov.tw/index.jsp 。
    內政部 (1949 ~ 2005),中華民國台閩地區人口統計,內政部編印。
    陳紹馨 (1979),「中國社會文化研究的實驗室 – 台灣」,台北聯經出版事業
    公司。
    何正羽 (2006),“高齡人口 Gompertz 死亡率推估模型的建構與應用”,東吳
    大學商用數學系碩士論文。
    余清祥與藍銘偉 (2003),“台灣地區生育率模型之研究”,人口學刊,Vol. 27,
    105-131。
    黃意萍與余清祥 (2002),“台灣地區生育率模式的推估研究”,人口學刊,
    Vol. 25, 145-171。
    曾奕翔與余清祥 (2002),“台灣地區死亡率推估的實證方法之研究”,中華民
    國人口學年會學術研討會。
    賴思帆與余清祥 (2006),“台灣與各國生育率模型之實證與模擬比較”,人口
    學刊, Vol. 33, 33-59。
    郭孟坤與余清祥 (2007),“電腦模擬與隨機方法在人口推估的應用”,國立政
    治大學統計學系碩士論文。
    Alho, J. M. (1990b), “Stochastic Methods in Population Forecasting.” International J.
    Forecasting, Vol.6, 521-530.
    Alho, J. M. (2002), “The Population of Finland in 2050 and Beyond.” The Research
    Institute of the Finnish Economy, Discussion Papers, No.826.
    Alho, J., Alders, M., Cruijsen, H., Keliman, N., Nikander, T. and Pham. D.Q. (2006),
    “New Forecast:Population Decline Postponed in Europe.” Statistical Journal of
    the United Nations ECE, Vol.23, 1-10.
    Alho, J.M. and Spencer, B.D. (1997), “The Practical Specification of the Expected
    Error of Population Forecasts.” Journal of Official Statistics, Vol.13(3), 203-225.
    Alho, J.M. and Spencer, B.D. (2005), Statistical Demography and Forecasting,
    Springer, New York.
    Armstrong, J.S. (2001), “Principles of Forecasting: A Handbook for Researchers and
    Practitioners.” Kluwer Academic Publishers, Boston.
    Bongarrts, J. and Feeney G. (1998), “On the Quantum and Tempo of Fertility.”
    Population And Development Review, Vol.24(2), 271-291.
    Bühlmann, P. (2002), “Bootstraps for Time Series.” Statistical Science, Vol. 17(1),
    52-72.
    Cannan, E. (1895), “The probability of a cessation of the growth of population in
    England and Wales during the next century.” The Economic Journal 5(20):505-
    515.
    Chatfield, C. (2000), Time-Series Forecasting Chapman & Hall/CRC, New York.
    Cushing, B. and Poot, J. 2004, “Crossing boundaries and borders: regional science
    advances in migration modelling.” Regional Science 83: 317–338.
    Denton, F.T., Feaver, C.H., and Spencer, B.G. (2005), “Time Series Analysis and
    Stochastic Forecasting: An Econometric Study of Mortality and Life
    Expectancy.” Journal of Population Economics, Vol.18, 203-227.
    Efron, B. (1979), “ Bootstrap Method : Another Look at Jackknife. ”, Ann Statist, Vol.
    7, 1-26.
    Gullickson, A. (2001), “Multiregional probabilistic forecasting.” Paper presented at
    the Young Scientists Summer Program Midsummer Workshop, International
    Institute for Applied Systems Analysis, July 2001,Vienna, Austria.
    Gullickson, A., and Moen, J. (2001), “The Use of Stochastic Methods in Local Area
    Population Forecasts.”
    Hall, P. (1985), “Resampling a Coverage Pattern.” Stochastic Processes Applications,
    Vol. 20, 231-246.
    Keilman, N., Pham, D.Q., and Hetland, A. (2002), “Why Population Forecasts should
    be Probabilistic - Illustrated by the Case of Norway”, Demographic Research,
    Vol. 6, 410-454.
    Künsch, H.R. (1989), “The Jackknife and the Bootstrap for General Stationary
    Observations.” The Annuals of Statistics, Vol. 17, 1217-1261.
    Kupiszewski, M. and Kupizewska, D. (2003), “Internal migration component in subnational
    population projections in member states of the European Union.”
    Working Paper 2/2003, Central European Forum for Migration Research,
    Warsaw.
    Lee, R.D. (1974), “Forecasting Births in Post-Transition Populations: Stochastic
    Renewal with Serially Correlated Fertility.” Journal of American Statistical
    Association, Vol.69, 607-617.
    Lee, R.D. (1998), “Probabilistic Approaches to Population Forecasting.” Population
    and Development Review, Vol. 24, Supplement: Frontiers of Population
    Forecasting. 156-190.
    Lee, R.D. and Carter, L (1992), “Modeling and Forecasting U. S. Mortality.” Journal
    of the American Statistical Association, Vol. 87, 659-671.
    Lee, R.D. and Tuljapurkar, S. (1994), “Stochastic Population Forecasts for the United
    States : Beyond High, Medium and Low.” Journal of the American Statistical
    Association, Vol. 89, 1175-1189.
    Lee, R.D. and Miller, T. (2001), “Estimating the Performance of the Lee-Carter
    Method for Forecasting Mortality.” Demography, Vol.38, 537-549.
    Lee, R., Miller, T. and Edwards, R.D. (2003), “The Growth and Aging of California’s
    Population: Demographic and Fiscal Projections, Characteristics and Service
    Needs.” California Policy Research Centre, University of California, Berkeley,
    CA.
    Isserman, A. (1985), “The Right People, the Right Rates: Making Population
    Estimates and Forecasts with an Interregional Cohort-Component Model.”
    Journal of the American Planning Association 59, 45–64.
    Long, J.F. and Hollmann, F.W. (2004), “Developing Official Stochastic Population
    Forecasts at the US Census Bureau.” International Statistical Review, Vol. 72(2),
    201-208.
    Lutz, W., Sanderson, W., and Scherbov, S. (1996), “Probabilistic Population
    Projections Based on Expert Opinion.” The Future Population of the World.
    What Can We Assume Today? ,Ed. W. Lutz, 397-428, Revised Edition, London,
    Earthscan.
    Lutz, W., Saariluoma P., Sanderson, W., and Scherbov, S. (2000), “New
    Developments in the Methodology of Expert- and Argument-Based Probabilistic
    Forecasting.” IIASA Interim Report, IR-00-020.
    Lutz, W., Sanderson, W., and Scherbov, S. (2001), “The End of World Population
    Growth.” Nature, Vol. 412, 543-545.
    Lutz, W., Sanderson, W., and Scherbov, S. (2004), “The End of World Population
    Growth.” The End of World Population Growth in the 21st Century, 17-83,
    London, Earthscan.
    Lutz, W. and Scherbov, S. (1998), “An Expert-Based Framework for Probabilistic
    National Population Projections: The Example of Austria.” European Journal of
    Population, Vol. 14, 1-17.
    Mammen, E. and Nandi, S. (2004), “Bootstrap and Resampling.” Handbook of
    Computational Statistics Concepts and Methods, Ed. Gentle, J. E., Härdle, W.
    and Mori, Y., 468-495, Springer, Heidelberg.
    Maarten, A. and Joop, D.B. (2002),“An Expert Knowledge Approach to Stochastic
    Mortality Forecasting in the Netherlands.”
    Miller, T. (2002), “California’s uncertain population future.” Unpublished paper,
    Department of Demography, University of California, Berkeley, US.
    O`Neill, B.C., Balk, D., Brickman, M., and Ezra, M. (2001), “A Guide to Global
    Population Projections.” Demographic Research, Vol. 4, 203-288.
    Politis, D.N. and Romano J.P. (1994), “The Stationary Bootstrap.” Journal of the
    American Statistical Association, Vol. 89, 1303-1313.
    Rees, P., and Turton, I. (1998), “Investigation of the effects of input uncertainty on
    population forecasting.” Paper prepared for the GeoComputation 98 Conference,
    Bristol, UK, 17–19 September 1998.
    Rogers, A. (1975), “Introduction to Multiregional Mathematical Demography.” New
    York: John Wiley and Sons.
    Rogers, A. (1985), “Regional Population Projection Models.” Beverly Hills, CA:
    Sage.
    Rogers, A. and Castro, L. (1984), “Model migration schedules. In Migration,
    Urbanization, and Spatial Population Dynamics.” Chapter 2, pp. 41{91. Boulder:
    Westview Press.
    Rogers, A., Willekens, F., Little, J. and Raymer, J. (2002), “Describing Migration
    Spatial Structure.” Regional Science 81, 29–48.
    Sanderson, W.C., Scherbov, S., O’Neill, B.C., and Lutz, W. (2004), “Conditional
    Probabilistic Population Forecasting.” International Statistical Review, Vol.
    72(2), 157-166.
    Smith, S.K. (1997), “Further Thoughts on Simplicity and Complexity in Population
    Projection Models.” International Journal of Forecasting, Vol. 13, 557-565.
    Smith, S.K., and Tayman, J. (2004), “Confidence Intervals for Population Forecasts:
    A Case Study of Time Series Models for states.” Paper prepared for the
    Population Association of America Meeting, Boston, April 1–3, 2004.
    Smith, S.K. (1986), “Accounting for Migration in Cohort-Component Projections of
    State and Local Populations.” Demography , Vol. 23, No. 1. (Feb., 1986), pp.
    127-135.
    Stoto, M.A. (1983), “The Accuracy of Population Projections.” J.A.S.A., Vol. 78
    (381), 13-20.
    Tuljapurkar, S., Lee, R.D., and Li, Q. (2004), “Random Scenario Forecasts Versus
    Stochastic Forecasts.” International Statistical Review, Vol. 72(2), 185-199.
    Van Imhoff, E., Van derGaag, N., Van Wissen, L. and Rees, P. (1997), “The
    Selection of Internal Migration Models for European Regions.” International
    Journal of Population Geography 3, 137–59.
    Whelpton, P.K. (1928), “Population of the United States, 1925 to 1975.” American
    Journal of Sociology, Vol. 34, 253-270.
    Whelpton, P.K. (1954), “On Stationary Processes in the Plane.” Biometrika, Vol. 41,
    434-449.
    Wilson, T. and Bell, M. (2004a), “Australia’s Uncertain Demographic Future.”
    Demographic Research 11–8.
    Wilson, T. and Bell, M. (2004b), “Comparative Empirical Evaluations of Internal
    Migration Models in Subnational Population Projections.” Journal of Population
    Research 21.2, 127–60.
    Wilson, T. and Rees, P. (2005), “Recent Developments in Population Projection
    Methodology : A Review.” Population, Space and Place, Vol. 11, 337-360.
    Description: 碩士
    國立政治大學
    統計研究所
    95354009
    96
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095354009
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    400901.pdf57KbAdobe PDF2792View/Open
    400902.pdf254KbAdobe PDF2773View/Open
    400903.pdf131KbAdobe PDF2917View/Open
    400904.pdf132KbAdobe PDF2830View/Open
    400905.pdf333KbAdobe PDF2822View/Open
    400906.pdf540KbAdobe PDF2942View/Open
    400907.pdf254KbAdobe PDF2860View/Open
    400908.pdf1620KbAdobe PDF2845View/Open
    400909.pdf284KbAdobe PDF2813View/Open
    400910.pdf137KbAdobe PDF21023View/Open
    400911.pdf1079KbAdobe PDF2877View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback