English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50805159      Online Users : 740
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/33899
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/33899


    Title: 態度量表中檢定組間差異之統計方法
    Authors: 林昱君
    Contributors: 江振東
    林昱君
    Keywords: 態度量表
    李克特
    變異數分析
    Q統計量
    Attitude measurement
    Likert
    ANOVA
    Q statistic
    Date: 2003
    Issue Date: 2009-09-17 18:45:39 (UTC+8)
    Abstract: 當研究者想要了解態度量表中不同組間之態度分數是否有所差異時,一個常見的分析方法為變異數分析。然而,變異數分析需要建立在資料服從常態分配之假設上,態度量表之資料類型卻很明顯地不符合此一假設。而非針對連續型資料所推導出來的 統計量,應該是較適合處理序列或是等距尺度等非常態資料之檢定方法。本研究主要之目的即為探討利用 統計量以及利用變異數分析兩者所作出之檢定結果差異為何。過去相關研究皆假設態度量表背後存在一連續潛在變數,本研究則直接由間斷型分配出發。在公式推導上,我們發現 統計量與變異數分析中之 統計量存在一對一對應之關係。雖然兩統計量近似之分配不同,但兩統計量所對應之p值卻始終非常接近。若以0.05為顯著水準, 統計量與 統計量之檢定結果幾乎完全相同。當需要檢定不同組間在多題上之看法是否具有差異時,我們比較了將屬於同一主題之各題分數加總,然後依照單變量變異數分析之方法進行檢定,以及多變量變異數分析法、羅吉斯迴歸分析法等三種方法。根據我們的模擬結果,若各組在各題之態度皆很類似,則利用ANOVA進行分析可以得到較低的型一誤差;若各組在各題之態度不太一致,且有左右偏分配互相抵銷的情形,則利用MANOVA或是羅吉斯迴歸分析法才能夠維持住很高的檢定力。
    In social science literature, we frequently found that ANOVA techniques were utilized to analyze Likert-type response data. However, one of the three basic assumptions behind ANOVA is that response variable is normally distributed, and Likert-type data apparently do not share this property. In this study, we compare the performance between statistic associated with ANOVA with Mantel- Haenszel statistic, a statistic aimed at handling categorical data. We found that statistic and statistic have one-to-one relationship. Although these two statistics can be approximated by distribution and Chi-square distribution respectively, their p values are quite close to each other. At the significant level of 0.05, and statistics almost have the same testing results. In addition to analyzing a single Likert-type response question, we would also like to analyze a set of Likert-type response questions that probably represent a specific concept. We propose two alternatives here. The first one is MANOVA, and the second one is logistic regression analysis. According to the simulation results, using the ANOVA approach is slightly better in terms of the type I error rate if the responses have similar structures among questions. On the other hand, using MANOVA or logistic regression analysis would maintain higher power whenever the responses have different structures among questions.
    Reference: 1. Box, G. E. P., Hunter, W. G., and Hunter J. S. (1978). Statistics for Experimenters. Wiley, New York.
    2. Cochran, W. (1954). Some Methods of Strengthening the Common Test. Biometrics, 10, 417-451.
    3. Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7 (part 2), 179-188.
    4. Gregoire, T. G., and Driver, B. L. (1987). Analysis of ordinal data to detect population differences. Psychological Bulletin, 101, 159-165.
    5. Kim, D., and Agresti, A. (1997). Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables. Computational Statistics & Data Analysis, 24, 89-104.
    6. Koch, G. G. (1969). A Useful Lemma for Proving the Equality of Two Matrices with Applications to Least Squares Type Quadratic Forms. Journal of the American Statistical Association, 64, 969-970.
    7. Koch, G. G., and Bhapkar, V. P. (1982). Chi-square tests. Encyclopedia of Statistical Sciences, N. L. Johnson and S. Kotz (eds), 442-457. Wiley, New York.
    8. Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, New York.
    9. Mantel, N., and Haenszel, W. (1959). Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. Journal of the National Cancer Institute, 22, 719-748.
    10. Press, S. J., and Wilson, S. (1978). Choosing Between Logistic Regression and Discriminant Analysis. Journal of the American Statistical Association, 73, 699-705.
    11. Somes, G. W. (1986). The Generalized Mantel-Haenszel Statistic. The American Statistician, 40, 106-108.
    Description: 碩士
    國立政治大學
    統計研究所
    91354002
    92
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0091354002
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    35400201.pdf55KbAdobe PDF2763View/Open
    35400202.pdf147KbAdobe PDF2825View/Open
    35400203.pdf111KbAdobe PDF2714View/Open
    35400204.pdf126KbAdobe PDF21114View/Open
    35400205.pdf480KbAdobe PDF21180View/Open
    35400206.pdf386KbAdobe PDF21618View/Open
    35400207.pdf1016KbAdobe PDF23512View/Open
    35400208.pdf351KbAdobe PDF2903View/Open
    35400209.pdf137KbAdobe PDF2954View/Open
    35400210.pdf114KbAdobe PDF2677View/Open
    35400211.pdf167KbAdobe PDF2755View/Open
    35400212.pdf83KbAdobe PDF2897View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback