English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51786958      Online Users : 283
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/32727
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32727


    Title: 利用貝氏網路建構綜合觀念學習模型之初步研究
    An Exploration of Applying Bayesian Networks for Mapping the Learning Processes of Composite Concepts
    Authors: 王鈺婷
    Wang, Yu-Ting
    Contributors: 劉昭麟
    Liu, Chao-Lin
    王鈺婷
    Wang, Yu-Ting
    Keywords: 智慧型教學系統
    貝氏網路
    潛在變項分析
    教育評量
    學生模型
    Intelligent Tutoring System
    Bayesian Networks
    Latent Variable Analysis
    Educational Assessment
    Student Modeling
    Automated Cognitive Diagnosis
    Date: 2004
    Issue Date: 2009-09-17 14:08:46 (UTC+8)
    Abstract: 本研究以貝氏網路作為表示教學領域中各個學習觀念的關係的語言。教學領域中的學習觀念包含了基本觀念與綜合觀念,綜合觀念是由兩個以上的基本觀念所衍生出來的觀念,而綜合觀念的學習歷程即為學生在學習的過程中如何整合這些基本觀念的過程。了解綜合觀念的學習歷程可以幫助教師及出題者了解學生的學習路徑,並修改其教學或出題的方針,以期能提供適性化的教學及測驗。為了從考生答題資料中尋找出這個隱藏的綜合觀念學習歷程,我們提出一套以mutual information以及一套以chi-square test所發展出來的研究方法,希望能夠藉由一個模擬環境中模擬考生的答題資料來猜測考生學習綜合觀念的學習歷程。
    初步的實驗結果顯示出,在一些特殊的條件假設下,我們的方法有不錯的機會找到暗藏在模擬系統中的學習歷程。因此我們進而嘗試提出一個策略來尋找較大規模結構中的學習歷程,利用搜尋的概念嘗試是否能較有效率的尋找出學生對於綜合觀念學習歷程。雖然在實驗中並沒有十分理想的結果,但是在實驗的過程中,我們除了發現學生答題資料的模糊程度為系統的正確率的主要挑戰之外,另外也發現了學生類別與觀念能力之間的關係也是影響實驗結果的主要因素。透過我們的方法,雖然不能完美的找出學生對於任何綜合觀念的綜合歷程,但是我們的實驗過程與結果也對隱藏的真實歷程結構提供了不少線索。
    最後,我們探討如何藉由觀察學生接受測驗的結果來分類不同學習程度與狀況的學生之相關問題與技術。我們利用最近鄰居分類法與k-means分群法以及基於這些方法所變化出的方法,探討是否能透過學生的答題資料有效的分辨學生能力的類別。實驗結果顯示出,在每個觀念擁有多道測驗試題的情況下,利用最近鄰居分類法與k-means分群法以及基於這些方法所變化出的方法,藉由考生答題資料來進行學生能力類別的分類可以得到不錯的正確率。我們希望這些探討和結果能對適性化教學作出一些貢獻。
    In this thesis, I employ Bayesian networks to represent relations between concepts in pedagogical domains. We consider basic concepts, and composite concepts that are integrated from the basic ones. The learning processes of composite concepts are the ways how students integrate the basic concepts to form the composite concepts. Information about the learning processes can help teachers know the learning paths of students and revise their teaching methods so that teachers can provide adaptive course contents and assessments. In order to find out the latent learning processes based on students’ item response patterns, I propose two methods: a mutual information-based approach and a chi-square test-stimulated heuristics, and examine the ideas in a simulated environment.
    Results of some preliminary experiments showed that the proposed methods offered satisfactory performance under some particular conditions. Hence, I went a step further to propose a search method that tried to find out the learning process of larger structures in a more efficient way. Although the experimental results for the search method were not very satisfactory, we would find that both the uncertainty included by the students’ item response patterns and the relations between student groups and concepts substantially influenced the performance achieved by the proposed methods. Although the proposed methods did not find out the learning processes perfectly, the experimental processes and results indeed had the potential to provide information about the latent learning processes.
    Finally, I attempted to classify students’ competence according to their item response patterns. I used the nearest neighbor algorithm, the k-means algorithm, and some variations of these two algorithms to classify students’ competence patterns. Experimental results showed that the more the test items used in the assessment, the higher the accuracy of classification we could obtain. I hope that these experimental results can make contributions towards adaptive learning.
    Reference: Abramowitz, M. and Stegun, I. A. (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth printing, New York: Dover, 824−825, 1972.
    Aurenhammer, F., Voronoi diagrams - a survey of a fundamental geometric data structure, ACM Computing Surveys, 23, 345−405, 1991.
    Birenbaum, M., Kelly, A. E., Tatsuoka, K. K., and Gutvirtz, Y., Attribute mastery patterns from rule space as the basis for student models in Algebra, International Journal of Human-Computer Studies, 40(3), 497–508, 1994.
    Brian, T. L., K-Means Clustering, http://fconyx.ncifcrf.gov/~lukeb/kmeans.html, 2005.
    Brusilovsky, P., Schwarz, E., and Weber, G., ELM-ART: An intelligent tutoring system on world wide web, Proceedings of the Third International Conference on Intelligent Tutoring Systems, 261−269, 1996.
    Bunt, A. and Conati, C., Assessing effective exploration in open learning environments using Bayesian networks, Proceedings of the Sixth International Conference on Intelligent Tutoring Systems, 698−707, 2002.
    Bunt, A. and Conati, C., Probabilistic student modeling to improve exploratory behavior, User Modeling and User-Adapted Interaction, 13(3), 269−309, 2003.
    Burns, H. L. and Capps, C. G., Foundations of Intelligent Tutoring Systems: An Introduction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.
    Chen, C.-M., Lee, H.-M., and Chen, Y.-H., Personalized e-leaning system using item response theory, Computer & Education, 44(3), 237−255, 2005.
    Collins, J. A., Greer, J. E., and Huang, S. X., Adaptive assessment using granularity hierarchies and Bayesian nets, Proceedings of the Third International Conference on Intelligent Tutoring Systems, 569–577, 1996.
    Conati, C., Gertner, A. S., VanLehn, K., and Druzdzel, M. J., On-line student modeling for coached problem solving using Bayesian networks, Proceedings of the Sixth International Conference on User Modeling, 231−242, 1997.
    Conati, C., Gertner, A. S., and VanLehn, K., Using Bayesian networks to manage uncertainty in student modeling, User Modeling and User-Adapted Interaction, 12, 371–417, 2002.
    Cover, T. and Hart, P., Nearest neighbor pattern classification, Institute of Electrical and Electronics Engineers, Transactions on Information Theory, 13, 21−27, 1967.
    Cover, T. M. and Thomas, J. A., Elements of Information Theory, John-Wiley and Sons, 1991.
    Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J., Probabilistic Networks and Expert Systems, Springer-Verlag, New York, 1999.
    Garthwaite, P. H., Jolliffe, I. T., and Jones, B., Statistical Inference, Prentice Hall, 1995.
    Hambleton, R. K., Swaminathan, H., and Rogers, H. J., Fundamentals of Item Response Theory, Sage Publications, 1991.
    Hatzilygeroudis, I., and Prentzas, J., Knowledge representation requirements for intelligent tutoring systems, Proceedings of the Seventh International Conference on Intelligent Tutoring Systems, 87−97, 2004.
    Heckerman, D. and Breese, J. S., Causal independence for probability assessment and inference using bayesian networks, Institute of Electrical and Electronics Engineers Transactions on Systems, Man, and Cybernetics, 26(6), 826−831,1994.
    Heckerman, D., Learning Bayesian networks, Technical Report MSR-TR-95-02, Microsoft Research, 1995a.
    Heckerman, D., A tutorial on learning with Bayesian networks, Technical Report MSR-TR-95-06, Microsoft Research, 1995b.
    Heckerman, D., Mamdani, A., and Wellman, M. P., Real world applications of Bayesian networks, Communications of the ACM, 38,1995.
    Hsu, C.-N., Chung, H.-H, and Huang, H.-S., Mining skewed and sparse transaction data for personalize shopping recommendation, Machine Learning, 57(1-2), 35–59, 2004.
    Hugin Expert A/S., HUGIN API Reference Manual Version 6.2, http://developer.hugin.com/documentation/API_Manuals, 2004
    Jensen, F. V., Bayesian Networks and Decision Graphs, Springer, 2001.
    Liu, C.-L., Wang, Y.-T., and Liu, Y.-C., A Bayesian network-based simulation environment for investigating assessment issues in intelligent tutoring systems, Proceedings of the International Computer Symposium 2004, 234−239, 2004.
    Liu, C.-L., Using mutual information for adaptive item comparison and student assessment, Journal of Educational Technology & Society, 8(4), to appear.
    MacQueen, J. B., Some methods for classification and analysis of multivariate observations, Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281−297, 1967.
    Millán, E., Pérez-de-la-Cruz, J. L., and Suárez, E., Adaptive Bayesian networks for multilevel student modelling, Proceedings of the Fifth International Conference on Intelligent Tutoring Systems, 534–543, 2000.
    Millán, E., and Pérez-de-la-Cruz, J. L., A Bayesian diagnostic algorithm for student modeling and its evaluation, User Modeling and User-Adapted Interaction, 12(2-3), 281−330, 2002.
    Manning, S. H., “Foundations of Statistical Natural Language Processing”, MIT Press, 1999.
    Martin, J., and VanLehn, K., Student assessment using Bayesian nets, International Journal of Human-Computer Studies, 42(6), 575−591, 1995.
    Mislevy, R. J. Probability-based inference in cognitive diagnosis. In Nichols, P., Chipman, S., and Brennan, R., L., eds., Cognitively Diagnostic Assessment, Hillsdale, NJ: Erlbaum, 1995.
    Mislevy, R. J., and Gitomer, G. H., The role of probability-based inference in an intelligent tutoring system, User Modeling and User-Adapted Interaction, 5, 253–282, 1996.
    Misley, R. J., Almond, R. G., Yan, D., and Steinberg, L. S., Bayes nets in educational assessment: Where do the numbers come from?, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 437–446, 1999.
    Neapolitan, R. E., Learning Bayesian Networks, Prentice Hall, 2004.
    Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, 1988.
    Reye, J., Student modeling based on belief networks, International Journal of Artificial Intelligence in Education, 14, 63−96, 2004.
    Rijsbergen, C. J., Information Retrieval, Butterworths, 1979.
    Rost, J. and Langeheine, R. (Eds.), Applications of Latent Trait and Latent Class Models in the Social Sciences, Wasmann, 1997.
    Stirling, J., Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium, 1730. English translation by Holliday, J., The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series, 1749.
    Tatsuoka, K. K., Rule space: An approach for dealing with misconceptions based on item response theory, Journal of Educational Measurement, 20, 345–354, 1983.
    VanLehn, K., Ohlsson, S., and Nason, R., Applications of simulated students: An exploration, International Journal of Artificial Intelligence in Education, 5(2), 135–175, 1994.
    VanLehn, K. and Martin, J., Evaluation of an assessment system based on Bayesian student modeling, International Journal of Artificial Intelligence in Education, 8(2), 179–221, 1997.
    VanLehn, K., Conceptual and meta learning during coached problem solving, Proceedings of the Third International Conference on Intelligent Tutoring Systems, 29–47, 1996.
    Vomlel, J., Bayesian networks in educational testing, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12, 83−100, 2004.
    Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K., Probability and Statistics for Engineers and Scientists, seventh edition, Prentice Hall, 2002.
    Yan, D., Almond, R. G., and Mislevy, R. J., Empirical comparisons of cognitive diagnostic models, Technical Report, Educational Testing Service, http://www.ets.org/research/dload/aera03-yan.pdf, 2003.
    Zhou, Y. and Evens, M. W., A practical student model in an intelligent tutoring system, Proceedings of the Eleventh IEEE International Conference on Tools with Artificial Intelligence, 13–18, 1999.
    Description: 碩士
    國立政治大學
    資訊科學學系
    92753028
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0927530281
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    53028101.pdf51KbAdobe PDF2817View/Open
    53028102.pdf76KbAdobe PDF2930View/Open
    53028103.pdf66KbAdobe PDF2809View/Open
    53028104.pdf66KbAdobe PDF2769View/Open
    53028105.pdf67KbAdobe PDF2751View/Open
    53028106.pdf57KbAdobe PDF2823View/Open
    53028107.pdf130KbAdobe PDF2957View/Open
    53028108.pdf126KbAdobe PDF21787View/Open
    53028109.pdf252KbAdobe PDF21132View/Open
    53028110.pdf315KbAdobe PDF21064View/Open
    53028111.pdf866KbAdobe PDF2856View/Open
    53028112.pdf368KbAdobe PDF21049View/Open
    53028113.pdf81KbAdobe PDF2818View/Open
    53028114.pdf124KbAdobe PDF21004View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback