Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/32669
|
Title: | IEEE 802.16 Mesh Mode分散式排程之數學模型建立 Modeling the Distributed Scheduler of IEEE 802.16 Mesh Mode |
Authors: | 陳彥賓 Chen, Yan-Bin |
Contributors: | 蔡子傑 Tsai, Tzu-Chieh 陳彥賓 Chen, Yan-Bin |
Keywords: | 都會型 無線網路 網狀網路 分散式排程 馬可夫鏈 排隊理論 IEEE 802.16 WiMax Mesh Distributed Scheduler Markov Chain Queueing |
Date: | 2006 |
Issue Date: | 2009-09-17 14:01:00 (UTC+8) |
Abstract: | IEEE 802.16 是一支援都會型無線網路的協定,IEEE 802.16支援PMP模式(點對多點)和網狀模式兩種。在網狀模式中,所有節點的構成仿如ad-hoc方式,並依據在控制性子框中的排程資訊來計算下次遞送時間。在資料傳送之前,會有一段設定連線的時間。這段時間,每一個節點都必須跟鄰節點競爭,以取得廣播它的排程資訊給鄰節點的機會。這樣的行為跟它過去的歷史無關。換句話說,它具有”時間同質性”而適合以隨機程序來模擬。在這篇論文中,我們將用排隊程序來建立排程行為的模型,然後以馬可夫鏈來估計它的平均延遲時間,也就是一節點持續地競爭直到贏為止的這段等待時間。 The IEEE 802.16 standard is a protocol for wireless metropolitan networks. IEEE 802.16 MAC protocol supports both of PMP (point to multipoint) and Mesh mode. In the mesh mode, all nodes are organized in a fashion similar ad-hoc and calculate their next transmission time based on the scheduling information performed in the control subframe. Before data transmission for a certain node, there is a period of time to setup the connection. During this period, each node has to compete with each other for the opportunity to advertise scheduling messages to its neighbors. This behavior does not depend on past history. In other words, it is a “Time Homogeneous” and suitable for being modeled by stochastic process. In this thesis, we will model this scheduling behavior by queuing process, and apply the Markov Chain to estimate its average delay time which a node keep waiting until it win the competition. |
Reference: | [1] IEEE, “802.16 IEEE Standard for Local and metropolitan area networks, Part16:Air Interface for Fixed Broadband Wireless Access Systems”, IEEE Std 802.16dTM 2004, 1 October 2004. [2] IEEE, “802.16 IEEE Standard for Local and metropolitan area networks, Part16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1”, IEEE Std 802.16eTM 2005, 28 February 2005. [3] Carl EKlund, Roger B. Marks, Kenneth L. Stanwood, and Stanley Wang, “IEEE standard 802.16: A technical overview of the wirelessMAN air interface for broadband wireless access”, IEEE Communications Magazine, vol. 40, no. 6, June 2002, pp. 98-107. [4] Arunabha Ghosh, David R. Wolter, Jeffrey G. Andrews, and Runhua Chen, “Broadband Wireless Access with WiMax/8O2.16: Current Performance Benchmarks and Future Potential”, IEEE Communications Magazine, pages 129–136, February 2005. [5] Dave Beyer, Nico van Waes, Carl EKlund, “Tutorial: 802.16 MAC Layer Mesh Extensions Overview”, http://www.ieee802.org/16/tga/contrib/S80216a-02_30.pdf, 2002 [6] Nico Bayer, Dmitry Sivchenko, Bangnan Xu, Veselin Rakocevic, Joachim Habermann, “Transmission timing of signaling messages in IEEE 802.16 based Mesh Networks”, European Wireless 2006, Athens, Greece, April 2006. [7] Fuqiang LIU, Zhihui ZENG, Jian TAO, Qing LI, and Zhangxi LIN, “Achieving QoS for IEEE 802.16 in Mesh Mode”, 8th International Conference on Computer Science and Informatics, Salt Lake City, USA. [8] Simone Redana, Matthias Lott “Performance Analysis of IEEE 802.16a in Mesh Operation Mode”, Lyon, France, June 2004. [9] Min Cao, Wenchao Ma, Qian Zhang, Xiaodong Wang, Wenwu Zhu, “Modelling and Performance Analysis of the Distributed Scheduler in IEEE 802.16 Mesh Mode”, In MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, pages78–89, NewYork, NY, USA, ACM Press, May 2005. [10] Hung-Yu Wei, Samart Ganguly, Rauf Izmailov, and Zygmunt J. Haas, “Interference-Aware IEEE 802.16 Wimax Mesh Networks”, volume5, pages3102–3106, 2005. [11] Leonard Kleinrock, “QUEUEING SYSTEMS VOLUME I: THEORY”, p26, 1976. [12] Harish Shetiya, Vinod Sharma, “Algorithms for Routing and Centralized Scheduling to Provide QoS in IEEE 802.16 Mesh Networks”, ACM, October 2005. [13] Tzu-Chieh Tsai, Chi-Hong Jiang, and Chuang-Yin Wang, “CAC and Packet Scheduling Using Token Bucket for IEEE 802.16 Networks”, in Journal of Communications (JCM, ISSN 1796-2021), Volume : 1 Issue : 2, 2006. Page(s): 30-37. Academy Publisher. |
Description: | 碩士 國立政治大學 資訊科學學系 93971017 95 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0093971017 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|