English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113313/144292 (79%)
Visitors : 50947841      Online Users : 968
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/32653
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32653


    Title: 以財務比率、共同比分析和公司治理指標預測 上市公司財務危機之基因演算法與支持向量機的計算模型
    Applying Genetic Algorithms and Support Vector Machines for Predicting Financial Distresses with Financial Ratios and Features for Common-Size Analysis and Corporate Governance
    Authors: 黃珮雯
    Huang, Pei-Wen
    Contributors: 劉昭麟
    Liu, Chao-Lin
    黃珮雯
    Huang, Pei-Wen
    Keywords: 財務危機預測
    共同比分析
    公司治理
    基因演算法
    支持向量機
    Financial Distress Prediction
    Common-Size Analysis
    Corporate Governance
    Genetic Algorithms
    Support Vector Machines
    Date: 2005
    Issue Date: 2009-09-17 13:57:07 (UTC+8)
    Abstract: 過去已有許多技術應用來建立預測財務危機的模型,如統計學的多變量分析或是類神經網路等分類技術。這些早期預測財務危機的模型大多以財務比率作為變數。然而歷經安隆(Enron)、世界通訊(WorldCom)等世紀騙局,顯示財務數字計算而成的財務比率有其天生的限制,無法在公司管理階層蓄意虛增盈餘時,及時給予警訊。因此,本論文初步探勘共同比分析、公司治理及傳統的Altman財務比率等研究方法,試圖突破財務比率在財務危機預測問題的限制,選出可能提高財務危機預測的特徵群。接著,我們進一步應用基因演算法篩選質性與非質性的特徵,期望藉由基因演算法裡子代獲得親代間最優基因的交配過程,可以讓子代的適應值最大化,找出最佳組合的特徵群,然後以此特徵群訓練支持向量機預測模型,以提高財務預測效果並降低公眾的損失。實驗結果顯示,共同比分析與公司治理等相關特徵確實能提升預測財務危機模型的預測效果,我們應當用基因演算法嘗試更多質性與非質性的特徵組合,及早預警財務危機公司以降低社會成本。
    Reference: 1 T. Abdelwahed and E. M. Amir. New evolutionary bankruptcy forecasting model based on genetic algorithms and neural networks. Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, pp. 241-245, 2005.
    2 E. I. Altman. Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance, Vol. 23, pp. 589-609, 1968.
    3 E. I. Altman , R. Haldeman and P. Narayanan. Zeta analysis: a new model to identify bankruptcy risk of corporations, Journal of Banking and Finance, Vol. 1, pp. 29-54, 1977.
    4 C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm
    5 J. R. Coakley and C. E. Brown. Artificial neural networks in accounting and finance: modeling issues. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 9, pp. 119-144, 2000.
    6 A. Fan and M. Palaniswami. Selecting bankruptcy predictors using a support vector machine approach. Proceedings of the International Joint Conference on Neural Networks, Vol. 6, pp. 354-359, 2000.
    7 K. Fanning, K. Cogger, and R. Srivastava. Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 4, pp. 113-26, 1995.
    8 J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA, 1992.
    9 P.-W. Huang and C.-L. Liu. Exploiting corporate governance and common-size analysis for financial distress detecting models. Proceedings of the 5th International Conference on Computational Intelligence in Economics and Finance, to appear, 2006.
    10 S. Johnson, P. Boone, A. Breach, and E. Friedman. Corporate governance in the Asian financial crisis. Journal of Financial Economics, Vol. 58, pp. 141-186, 2000.
    11 R. La Porta, F. Lopez-de-Silanes, A. Shleifer, and R. Vishny. Agency problems and dividend policies around the world. Journal of Finance, Vol. 55, pp. 1-33, 2000.
    12 T. S. Lee and Y. H. Yeh. Corporate governance and financial distress: evidence from Taiwan. Corporate Governance, Vol. 12, pp. 378-388, 2004.
    13 M. L. Nasir, R. I. John, S. C. Bennett, D. M. Russell, and A. Patel. Predicting corporate bankruptcy using artificial neural networks. Journal of Applied Accounting Research, Vol. 5, pp. 30-52, 2000.
    14 M. D. Odom and R. Sharda. A neural network model for bankruptcy prediction. International Joint Conference on Neural Networks. Vol. 2, pp. 163-168, 1990.
    15 D. E. O’Leary. Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 7, pp. 187-197, 1998.
    16 Z. Pawlak. Rough sets. International Journal of Parallel Programming, Vol. 11, pp. 341-356, 1982.
    17 J. R. Quinlan. Introduction of decision trees. Machine Learning, Vol. 1, No. 1, pp. 81-106, 1986.
    18 J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.
    19 Van Rijsbergen. Information Retrieval, 2nd Edition, Butterworth-Heinemann Newton, 1979.
    20 S. Salcedo-Sanz, M. Deprado-Cumplido, and M. J. Segovia-Vargas. Feature selection methods involving support vector machines for prediction of insolvency in non-life insurance companies. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 12, pp. 261-281, 2004.
    21 H. Schilit. Financial shenanigans: how to detect accounting gimmicks & fraud in financial reports. New York: McGraw-Hill, 2002.
    22 K. S. Shin, T. S. Lee, and H. J. Kim. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, Vol. 28, pp. 127-135, 2005.
    23 K. S. Shin and Y. J. Lee. A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, Vol. 23, pp. 321-328, 2002.
    24 I. H. Witten and E. Frank. Data mining: practical machine learning tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.
    25 Y. H. Yeh, T. S. Lee and T. Woidtke. Family control and corporate governance: evidence for Taiwan. International Review of Finance, Vol. 2, pp. 21-48, 2001.
    26 MATLAB: http://www.mathwork.com
    27 TEJ: http://www.tej.com.tw
    28 葉銀華、李存修與柯承恩,「公司治理與評等系統」,初刷,商智文化,台灣,民國91年10月
    29 湯玲郎與施並洲,「灰關聯分析、類神經網路、案例推理法於財務危機預警模式之應用研究」,中華管理評論,第四卷,第二號,頁25-37,民國90年3月
    Description: 碩士
    國立政治大學
    資訊科學學系
    93753013
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093753013
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75301301.pdf46KbAdobe PDF2865View/Open
    75301302.pdf66KbAdobe PDF2955View/Open
    75301303.pdf82KbAdobe PDF2817View/Open
    75301304.pdf68KbAdobe PDF21484View/Open
    75301305.pdf99KbAdobe PDF2997View/Open
    75301306.pdf180KbAdobe PDF22058View/Open
    75301307.pdf84KbAdobe PDF2991View/Open
    75301308.pdf257KbAdobe PDF22629View/Open
    75301309.pdf288KbAdobe PDF22048View/Open
    75301310.pdf131KbAdobe PDF21736View/Open
    75301311.pdf98KbAdobe PDF2862View/Open
    75301312.pdf57KbAdobe PDF2904View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback