政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32645
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113451/144438 (79%)
造访人次 : 51302288      在线人数 : 894
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/32645


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/32645


    题名: 利用詞組檢索中文訴訟文書之研究
    An Exploration of Indexing Chinese Judicial Documents with Term Pairs
    作者: 謝淳達
    Hsieh,Chwen-Dar
    贡献者: 劉昭麟
    Liu,Chao-Lin
    謝淳達
    Hsieh,Chwen-Dar
    关键词: 法學資訊
    自然語言處理
    Machine Learning
    日期: 2004
    上传时间: 2009-09-17 13:55:29 (UTC+8)
    摘要: 本文將針對相似訴訟文書之搜尋進行研究與探討。在這裡所說的「相似案件」指的是有著相同犯罪行為的案件。判例是法院對於訴訟案件所作的確定判決的先例。在法律案件審判的過程中,對法官和律師而言,與目前的新案件案情相似的過去判例有時是有參考價值的。這意味著我們可以透過判例來推測新的訴訟案件可能的判決方向,因此搜尋過去判例是有其價值的。與一般常用的資訊檢索方法中以單一詞彙作為索引不同的是,我們嘗試以案件事實段中的詞組(兩個詞彙的組合)集合為基礎,由於詞組所包含的資訊比詞彙還多,我們希望透過詞組集合的比對,能夠更精確地找出類似於新案件的過去判例,藉此幫助一般人搜尋過去的相似判例,並能夠從過去判例中自行推測所遇上的法律糾紛可能的判決方向。然而,由於既有的電子詞典並未包含所有可能的詞彙,尤其是訴訟文件中常出現的一些特定詞彙,因此我們提出了一個可以從文件中自動擷取可能的中文詞彙的方法,並且利用這些擷取而得的詞彙協助我們分析判決書的事實段文字。此外我們將相似案件搜尋系統應用在實作「案件分類器」上,用以猜測新案件可能的案件類型。在我們的實驗中,我們提出的中文詞彙擷取方法TermSpotter所擷取出來的詞彙中,詞頻為30次以上的擷取正確率(人工判定為有用的詞彙數量╱程式輸出詞彙數量)為56.3%,而且這些詞彙經過人工過濾後,有三分之一的詞彙(953個)是HowNet電子詞典中所沒有的詞彙。而我們實作的案件分類器,在竊盜、搶奪、強盜、贓物、恐嚇、傷害、賭博七大類型案件的案由分類實驗有89.3%的正確率,而賭博罪的法條分類實驗也有81.9%的正確率。至於相似案件搜尋實驗中,我們以人工判斷其效果,目前所搜尋到的過去判例只有42%是值得參考的,未來仍有空間需要繼續嘗試改進。
    I study information retrieval methods for retrieving similar judicial documents. Here “similar judicial documents” refers to “cases that have a similar process of criminal violation”. For judges and lawyers, it is sometimes worth referring to prior cases which are similar to the new case in the process of judgment. Information about the judgments of the similar prior cases helps people to obtain a rough picture about how the new cases might be judged. In this work, I use phrases, rather than individual words as indices of Chinese judicial documents. Phrases provide a better foundation for indexing and retrieving documents than individual words. Constituents of phrases make other component words in the phrase less unambiguous than when the words appear separately. I expect the system could help anyone who is not a legal expert to retrieve similar prior cases on their own.
    The existing electronic dictionary does not collect all the possible words, especially the words that appear in specific-domain documents. Hence, I put forth an algorithm to automatically retrieve possible words in the corpus, and we will use these words as the basis to construct phrases in our system. Moreover, I implement the case classifier to automatically classify new cases into several different prosecution categories.
    I put forth the algorithm “TermSpotter” to automatically retrieve possible words that occur more than 30 times. In the experiments, 56.3% of the retrieved words are considered as useful words after manual filtration. Among these useful words, about one third of the words are not included in HowNet, and some of them are legal-domain-specific words. The implemented case classifier categorizes new cases into seven different prosecution categories: larceny, robbery, robbery by threatening or disabling the victims, receiving stolen property, causing bodily harm, intimidation, and gambling. It reaches 89.3% in accuracy. The classifier can also categorize cases based on what criminal articles are violated. In the experiment of classifying gambling cases into four combinations of three articles, it reaches 81.9% in accuracy. In the experiment of retrieving prior cases which are similar to the new case, it only reaches 42% in accuracy judged by a practicing judge, so there is a lot of work to do to improve the classifier.
    參考文獻: 1. K. Al-Kofahi, A. Tyrrell, A. Vachher, T. Travers, P. Jackson, Combining multiple classifiers for text categorization, Proceedings of the Tenth International Conference on Information and Knowledge Management, 2001.
    2. K. D. Ashley and E. L. Rissland, But, see, accord: Generating blue book citations in HYPO, Proceedings of the First International Conference on Artificial Intelligence and Law, pp.67-74, 1987.
    3. S. Bruninghaus, K. D. Ashley, Toward adding knowledge to learning algorithms for indexing legal cases, Proceedings of the Seventh International Conference on Artificial Intelligence and Law, pp.9-17, 1999.
    4. L.-F. Chien, Fast and quasi-natural language search for gigabytes of Chinese texts, Proceedings of the Eighteenth Special Interest Group on Information Retrieval, pp.112–120, 1995.
    5. L.-F. Chien, PAT-tree-based keyword extraction for Chinese information retrieval, Proceedings of the Twentieth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.50-58, 1997.
    6. J. L. Fagan, Automatic phrase indexing for document retrieval: An examination of syntactic and non-syntactic methods, Proceedings of the Tenth Annual ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.91-101, 1987.
    7. D. Jurafsky, J. H. Martin, Speech and Language Processing, Prentice Hall, 1999.
    8. K. L. Kwok, Comparing representations in Chinese information retrieval, Proceedings of the Twentieth Special Interest Group on Information Retrieval, pp.34–41, 1997.
    9. O.-Y. Kwong, B.-K. Tsou, Automatic corpus-based extraction of Chinese legal terms, Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium, 2001.
    10. L. S. Larkey, W. B. Croft, Combining classifiers in text categorization, Proceedings of the Nineteenth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.289-297, 1996.
    11. C.-L. Liu, C.-T. Chang and J.-H. Ho, Case instance generation and refinement for case-based criminal summary judgments in Chinese, Journal of Information Science and Engineering, Vol.20, no.4, pp.783-800, 2004.
    12. C. D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, The MIT Press, 1999.
    13. E. Montañés, I. Díaz, J. Ranilla, E. F. Combarro, and J. Fernández, Scoring and selecting terms for text categorization, IEEE Intelligent Systems, Vol.20, no.3, pp.40-47, 2005.
    14. I. Moulinier, H. Molina-Salgado, and P. Jackson, Thomson Legal and Regulatory at NTCIR-3: Japanese, Chinese and English retrieval experiments, Proceedings of the Third NTCIR Workshop on Research in Information Retrieval, Automatic Text Summarization and Question Answering, 2002.
    15. J.-Y. Nie, J.-P. Chevallet, and M.-F. Bruandet, Between terms and words for European language IR and between words and bi-grams for Chinese IR, Proceedings of the Sixth Text Retrieval Conference, pp.697–710, 1997.
    16. R. Sproat, C. Shih, A statistical method for finding word boundaries in Chinese text, Computer Processing of Chinese and Oriental Languages, Vol.4, pp.336-351, 1990.
    17. P. Thompson, Automatic categorization of case law, Proceedings of the Eighth International Conference on Artificial Intelligence and Law, pp.70-77, 2001.
    18. J.-J. Tsay, J.-D. Wang, A scalable approach for Chinese term extraction, International Computer Symposium, 2000.
    19. I. H. Witten, E. Frank, Data Mining : Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 1999.
    20. W. Yang, X. Li, Poster session: Chinese keyword extraction based on max-duplicated strings of the documents, Proceedings of the Twenty-fifth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.439-440, 2002.
    21. 廖鼎銘, 觸犯多款法條之賭博與竊盜案件的法院文書的分類與分析, 碩士論文, 國立政治大學, 台北, 台灣, 2004.
    22. HowNet電子詞典http://www.keenage.com/
    23. 台灣司法院法學資料查詢系統http://nwjirs.judicial.gov.tw/FJUD/index.htm
    24. 大陸法律法規庫http://search.law.com.cn:8080/
    日本裁判所 http://www.courts.go.jp/index.htm
    美國最高法院判例等法律文件查詢 http://www.law.cornell.edu/index.html
    描述: 碩士
    國立政治大學
    資訊科學學系
    92753008
    93
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0092753008
    数据类型: thesis
    显示于类别:[資訊科學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    75300801.pdf57KbAdobe PDF2689检视/开启
    75300802.pdf147KbAdobe PDF2655检视/开启
    75300803.pdf160KbAdobe PDF2706检视/开启
    75300804.pdf149KbAdobe PDF2793检视/开启
    75300805.pdf322KbAdobe PDF2713检视/开启
    75300806.pdf366KbAdobe PDF2745检视/开启
    75300807.pdf360KbAdobe PDF2846检视/开启
    75300808.pdf284KbAdobe PDF2752检视/开启
    75300809.pdf384KbAdobe PDF2915检视/开启
    75300810.pdf275KbAdobe PDF2684检视/开启
    75300811.pdf528KbAdobe PDF2764检视/开启
    75300812.pdf277KbAdobe PDF2636检视/开启
    75300813.pdf85KbAdobe PDF2836检视/开启
    75300814.pdf1816KbAdobe PDF2742检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈