Reference: | Bellman R., Introduction to Matrix Analysis,MacGraw-Hill, London, (1960). Bertsimas D., An analytic approach to a general class of G/G/s queueing systems. Operations Research 38, 139-155, (1990). Chao, X., Pinedo, M. and Shaw, D.,An Assembly Network of Queues with Product Form Solution. Journal of Applied Probability, 33, 858-869, (1996). Chao, X., Miyazawa, M., Serfozo, R., and Takada. H., Necessary and sufficient conditions for product form queueing networks. Queueing Systems, Vol 28, 377-401,(1998). Le Boudec, J.Y., Steady-state probabilities of the PH/PH/1 queue. Queueing Systems 3, 73-88, (1988). Luh, H.\\, Matrix product-form solutions of stationary probabilities in tandem queues. Journal of the Operations Research 42-4, 436-656, (1999). Liu, S. Y. Invariant Subspace of Solving C_{k}/C_{m}/1, Master thesis National Chengchi University.(2004) Neuts, M.F., Matrix-Geometric Solutions in Stochastic Models. The John Hopkins University Press, (1981). Neuts, M.F., and Takahashi, Y., Asymptotic behavior of the stationary distributions in the GI/PH/c queue with heterogeneous servers. Z.\\ Wahrscheinlichkeitstheorie verw.\\ Gebiete, 57, 441-452, (1988). Wang, S. Y. A New Approach to Analyze Stationary Probability Distribution of a PH/PH/1/N Queue, Master thesis National Chengchi University.(2002) |