Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/32607
|
Title: | 研究Ferguson-Dirichlet過程和條件分配族相容性之新工具 New tools for studying the Ferguson-Dirichlet process and compatibility of a family of conditionals |
Authors: | 郭錕霖 Kuo,Kun Lin |
Contributors: | 姜志銘 Jiang,Thomas J. 郭錕霖 Kuo,Kun Lin |
Keywords: | c-特徵函數 相容性 Ferguson-Dirichlet過程 廣義貝氏反演公式 隨機泛函 c-characteristic function compatibility Ferguson-Dirichlet process generalized inverse Bayes formula random functional |
Date: | 2007 |
Issue Date: | 2009-09-17 13:50:18 (UTC+8) |
Abstract: | 單變量c-特徵函數已被證明可處理一些難以使用傳統特徵函數解決的問題, 在本文中,我們首先提出其反演公式,透過此反演公式,我們獲得(1)Dirichlet隨機向量之線性組合的機率密度函數;(2)以一些有趣測度為參數之Ferguson-Dirichlet過程其隨機動差的機率密度函數;(3)Ferguson-Dirichlet過程之隨機泛函的Lebesgue積分表示式。
本文給予對稱分配之多變量c-特徵函數的新性質,透過這些性質,我們證明在任何$n$維球面上之Ferguson-Dirichlet過程其隨機均值是一對稱分配,並且我們亦獲得其確切的機率密度函數,此外,我們將這些結果推廣至任何n維橢球面上。
我們亦探討條件分配相容性的問題,這個問題在機率理論與貝式計算上有其重要性,我們提出其充要條件。當給定相容的條件分配時,我們不但解決相關聯合分配唯一性的問題,而且也提供方法去獲得所有可能的相關聯合分配,我們亦給予檢驗相容性、唯一性及建構機率密度函數的演算法。
透過相容性的相關理論,我們提出完整且清楚地統合性貝氏反演公式理論,並建構可應用於一般測度空間的廣義貝氏反演公式。此外,我們使用廣義貝氏反演公式提供一個配適機率密度函數的演算法,此演算法沒有疊代演算法(如Gibbs取樣法)的收斂問題。 The univariate c-characteristic function has been shown to be important in cases that are hard to manage using the traditional characteristic function. In this thesis, we first give its inversion formulas. We then use them to obtain (1) the probability density functions (PDFs) of a linear combination of the components of a Dirichlet random vector; (2) the PDFs of random functionals of a Ferguson-Dirichlet process with some interesting parameter measures; (3) a Lebesgue integral expression of any random functional of the Ferguson-Dirichlet process.
New properties of the multivariate c-characteristic function with a spherical distribution are given in this thesis. With them, we show that the random mean of a Ferguson-Dirichlet process over a spherical surface in n dimensions has a spherical distribution on the n-dimensional ball. Moreover, we derive its exact PDF. Furthermore, we generalize this result to any ellipsoidal surface in n-space.
We also study the issue of compatibility for specified conditional distributions. This issue is important in probability theory and Bayesian computations. Several necessary and sufficient conditions for the compatibility are provided. We also address the problem of uniqueness of the associated joint distribution when the given conditionals are compatible. In addition, we provide a method to obtain all possible joint distributions that have the given compatible conditionals. Algorithms for checking the compatibility and the uniqueness, and for constructing all associated densities are also given.
Through the related compatibility theorems, we provide a fully and cleanly unified theory of inverse Bayes formula (IBF) and construct a generalized IBF (GIBF) that is applicable in the more general measurable space. In addition, using the GIBF, we provide a marginal density fitting algorithm, which avoids the problems of convergence in iterative algorithm such as the Gibbs sampler. |
Reference: | Amemiya, T. (1975) Qualitative response models. Annals of Economic and Social Measurement, 4, 363-372. Arnold, B.C. and Gokhale, D.V. (1998) Distributions of the most nearly compatible with given families of conditional distributions. Test, 7, 377-390. Arnold, B.C. and Press, S.J. (1989) Compatible conditional distributions. J. Amer. Statist. Assoc., 84, 152-156. Arnold, B.C., Castillo, E. and Sarabia, J.M. (2001) Conditionally specified distributions: an introduction (with discussion). Statist. Sci., 16, 249-274. Arnold, B.C., Castillo, E., and Sarabia, J.M. (2002) Exact and near compatibility of discrete conditional distributions. Comput. Statist. Data Anal., 40, 231-252. Arnold, B.C., Castillo, E., and Sarabia, J.M. (2004) Compatibility of partial or complete conditional probability specifications. J. Statist. Plann. Inference, 123, 133-159. Carlson, B.C. (1977) Special Functions of Applied Mathematics. New York: Academic Press. Casella, G. and George, E.I. (1992) Explaining the Gibbs sampler. Amer. Statist., 46, 167-174. Chung, K.L. (1974) A Course in Probability Theory. New York: Academic Press. Cifarelli, D.M. and Regazzini, E. (1990) Distribution functions of means of a Dirichlet process. Ann. Statist., 18, 429-442. Correction (1994): Ann. Statist., 22, 1633-1634. Cifarelli, D.M. and Melilli, E. (2000) Some new results for Dirichlet Priors. Ann. Statist., 28, 1390-1413. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B, 39, 1-38. Diaconis, P. and Kemperman, J. (1996) Some new tools for Dirichlet priors. In J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith (eds.), Bayesian Statistics 5, pp. 97-106. Oxford University Press. Dickey, J.M., Jiang, T.J., and Kuo, K.-L. (2008), Functionals of a Ferguson-Dirichlet process. Preprint. Epifani, I., Guglielmi, A., and Melilli, E. (2006) A stochastic equation for the law of the random Dirichlet variance. Statist. Probab. Lett., 76 , 495-502. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1953) Higher Transcendental Functions, vol. I. New York: McGraw-Hill. Ferguson, T.S. (1973) A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209-230. Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85, 398-409. Gourieroux, C. and Montfort, A. (1979) On the characterization of a joint probability distribution by conditional distributions. J. Econometrics, 10, 115-118. Gradshteyn, I.S. and Ryzhik, I.M. (2000) Table of Integrals, Series, and Products, 6th ed. New York: Academic Press. Grobner, W. and Hofreiter, W. (1973) Integraltafel, Vol. 2, 5th ed. New York: Springer-Verlag. Hannum, R.C., Hollander, M., and Langberg, N.A. (1981) Distributional results for random functionals of a Dirichlet process. Ann. Probab., 9, 665-670. Hjort, N.L. and Ongaro, A. (2005) Exact inference for random Dirichlet means. Stat. Inference Stoch. Process., 8, 227-254. Jiang, J. (1988) Starlike functions and linear functions of a Dirichlet distributed vector. SIAM J. Math. Anal., 19, 390-397. Jiang, T.J. (1991) Distribution of random functional of a Dirichlet process on the unit disk. Statist. Probab. Lett., 12, 263-265. Jiang, T.J., Dickey, J.M., and Kuo, K.-L. (2004) A new multivariate transform and the distribution of a random functional of a Ferguson-Dirichlet process. Stochastic Process. Appl., 111, 77-95. Jiang, T.J. and Kuo, K.-L. (2008a), Distribution of a random functional of a Ferguson-Dirichlet process over the unit sphere. To appear in Electron. Comm. Probab.. Jiang, T.J. and Kuo, K.-L. (2008b), The inversion formula of the c-characteristic function and its applications. Preprint. Kuo, K.-L. (2002) Some applications of multivariate c-transformations. Master thesis, Department of Mathematical Sciences, National Chengchi University. Kuo, K.-L., Song, C.-C., and Jiang, T.J. (2008a), Compatibility of discrete conditionals in higher dimensions. Preprint. Kuo, K.-L., Song, C.-C., and Jiang, T.J. (2008b), Compatible continuous conditionals and an application on normal conditionals. Preprint. Kuo, K.-L., Song, C.-C., and Jiang, T.J. (2008c), Generalized inverse Bayes formula for compatible conditional distributions. Preprint. Lijoi, A. and Regazzini, E. (2004) Means of a Dirichlet process and multiple hypergeometric functions. Ann. Probab., 32, 1469-1495. Liu, J.S. (1996) Discussion of "Statistical Inference and Monte Carlo Algorithms" by G. Casella. Test, 5, 305-310. Lord, R.D. (1954) The use of the Hankel transformations in statistics. I. General theory and example. Biometrika, 41, 44-55. Minc, H. (1988) Nonnegative Matrices. New York: Wiley. Nerlove, M. and Press, S.J. (1986) Multivariate log-linear probability models in econometrics. In Advances in Statistical Analysis and Statistical Computing (Edited by Mariano, R. S.), 117-171. Greenwich, CT: JAI Press. Ng, K.W. (1995) Explict formulas for unconditional pdf. Research Report, No. 82 (revised). Department of Statistics, University of Hong Kong. Ng, K.W. (1997) Inversion of Bayes formula: explict formulae for unconditional pdf. In Advance in the Theory and Practice in Statistics (Edited by Johnson, N. L. and Balakrishnan, N.), 571-584, New York: Wiley. Perez-Villalta, R. (2000) Variables finitas condicionalmente especificadas. Questioo, 24, 425-448. Provost, S.B. and Cheong, Y.-H. (2000) On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist., 28, 417-425. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I. (1986) Integrals and Series, Vol. 3. New York: Gordon and Breach Science Publishers. Rao, C.R. (1973) Linear Statistical Inference and Its Applications, New York: Wiley. Regazzini, E., Guglielmi, A., and Di Nunno, G. (2002) Theory and numerical analysis for exact distributions of functionals of a Dirichlet process. Ann. Statist., 30, 1376-1411. Song, C.-C., Li, L.-A., Chen, C.-H., Jiang, T.J., and Kuo, K.-L. (2006), Compatibility of finite discrete conditional distributions. Under revision. Sumner, D.B. (1949) An inversion formula for the generalized Stieltjes transform. Bull. Amer. Math. Soc., 55, 174-183. Tan, M., Tian, G.-L. and Ng, K. W. (2003).A noniterative sampling method for computing posteriors in the structure of EM-type algorithms. Statist. Sinica, 13, 625-639. Tanner, M.A. and Wong, W.H. (1987) The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc., 82, 528-540. Tian, G.-L., Ng, K.W., and Geng, Z. (2003) Bayesian computation for contingency tables with incomplete cell-counts. Statist. Sinica, 13, 189-206. Tian, G.-L. and Tan, M. (2003) Exact statistical solutions using the inversion Bayes formulae. Statist. Probab. Lett., 62, 305-315. Tian, G.-L., Tan, M. and Ng, K.W. (2007) An exact non-iterative sampling procedure for discrete missing data problems. Statist. Neerlandica, 61, 232-242. Weisstein, E.W. (2005) Permutation Matrix. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PermutationMatrix.html Widder, D.V. (1946) The Laplace Transform. Princenton University Press. Yamato, H. (1984) Characteristic functions of means of distributions chosen from a Dirichlet process. Ann. Probab., 12, 262-267. Zayed, A.I. (1996) Handbook of function and generalized function transformations. New York: CRC Press. |
Description: | 博士 國立政治大學 應用數學研究所 91751501 96 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0917515011 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|