English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51046473      Online Users : 962
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32607
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32607


    Title: 研究Ferguson-Dirichlet過程和條件分配族相容性之新工具
    New tools for studying the Ferguson-Dirichlet process and compatibility of a family of conditionals
    Authors: 郭錕霖
    Kuo,Kun Lin
    Contributors: 姜志銘
    Jiang,Thomas J.
    郭錕霖
    Kuo,Kun Lin
    Keywords: c-特徵函數
    相容性
    Ferguson-Dirichlet過程
    廣義貝氏反演公式
    隨機泛函
    c-characteristic function
    compatibility
    Ferguson-Dirichlet process
    generalized inverse Bayes formula
    random functional
    Date: 2007
    Issue Date: 2009-09-17 13:50:18 (UTC+8)
    Abstract: 單變量c-特徵函數已被證明可處理一些難以使用傳統特徵函數解決的問題,
    在本文中,我們首先提出其反演公式,透過此反演公式,我們獲得(1)Dirichlet隨機向量之線性組合的機率密度函數;(2)以一些有趣測度為參數之Ferguson-Dirichlet過程其隨機動差的機率密度函數;(3)Ferguson-Dirichlet過程之隨機泛函的Lebesgue積分表示式。

    本文給予對稱分配之多變量c-特徵函數的新性質,透過這些性質,我們證明在任何$n$維球面上之Ferguson-Dirichlet過程其隨機均值是一對稱分配,並且我們亦獲得其確切的機率密度函數,此外,我們將這些結果推廣至任何n維橢球面上。

    我們亦探討條件分配相容性的問題,這個問題在機率理論與貝式計算上有其重要性,我們提出其充要條件。當給定相容的條件分配時,我們不但解決相關聯合分配唯一性的問題,而且也提供方法去獲得所有可能的相關聯合分配,我們亦給予檢驗相容性、唯一性及建構機率密度函數的演算法。

    透過相容性的相關理論,我們提出完整且清楚地統合性貝氏反演公式理論,並建構可應用於一般測度空間的廣義貝氏反演公式。此外,我們使用廣義貝氏反演公式提供一個配適機率密度函數的演算法,此演算法沒有疊代演算法(如Gibbs取樣法)的收斂問題。
    The univariate c-characteristic function has been shown to be important in cases that are hard to manage using the traditional characteristic function. In this thesis, we first give its inversion formulas. We then use them to obtain (1) the probability density functions (PDFs) of a linear combination of the components of a Dirichlet random vector; (2) the PDFs of random functionals of a Ferguson-Dirichlet process with some interesting parameter measures; (3) a Lebesgue integral expression of any random functional
    of the Ferguson-Dirichlet process.

    New properties of the multivariate c-characteristic function with a spherical distribution are given in this thesis. With them, we show that the random mean of a Ferguson-Dirichlet process over a spherical surface in n dimensions has a spherical distribution on the n-dimensional ball. Moreover, we derive its exact PDF. Furthermore, we generalize this result to any ellipsoidal surface in n-space.

    We also study the issue of compatibility for specified conditional distributions. This issue is important in probability theory and Bayesian computations. Several necessary and sufficient conditions for the compatibility are provided. We also address the problem of uniqueness of the associated joint distribution when the given conditionals are compatible. In addition, we provide a method to obtain all possible joint distributions that have the given compatible conditionals. Algorithms for checking the compatibility and the uniqueness, and for constructing all associated densities are also given.

    Through the related compatibility theorems, we provide a fully and cleanly unified theory of inverse Bayes formula (IBF) and construct a generalized IBF (GIBF) that is applicable in the more general measurable space. In addition, using the GIBF, we provide a marginal density fitting algorithm, which avoids the problems of convergence in iterative algorithm such as the Gibbs sampler.
    Reference: Amemiya, T. (1975) Qualitative response models. Annals of Economic and Social Measurement, 4, 363-372.
    Arnold, B.C. and Gokhale, D.V. (1998) Distributions of the most nearly compatible with given families of conditional distributions. Test, 7, 377-390.
    Arnold, B.C. and Press, S.J. (1989) Compatible conditional distributions. J. Amer. Statist. Assoc., 84, 152-156.
    Arnold, B.C., Castillo, E. and Sarabia, J.M. (2001) Conditionally specified distributions: an introduction
    (with discussion). Statist. Sci., 16, 249-274.
    Arnold, B.C., Castillo, E., and Sarabia, J.M. (2002) Exact and near compatibility of discrete conditional distributions. Comput. Statist. Data Anal., 40, 231-252.
    Arnold, B.C., Castillo, E., and Sarabia, J.M. (2004) Compatibility of partial or complete conditional probability
    specifications. J. Statist. Plann. Inference, 123, 133-159.
    Carlson, B.C. (1977) Special Functions of Applied Mathematics. New York: Academic Press.
    Casella, G. and George, E.I. (1992) Explaining the Gibbs sampler. Amer. Statist., 46, 167-174.
    Chung, K.L. (1974) A Course in Probability Theory. New York: Academic Press.
    Cifarelli, D.M. and Regazzini, E. (1990) Distribution functions of means of a Dirichlet process. Ann. Statist., 18, 429-442. Correction (1994): Ann. Statist., 22, 1633-1634.
    Cifarelli, D.M. and Melilli, E. (2000) Some new results for Dirichlet Priors. Ann. Statist., 28, 1390-1413.
    Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B, 39, 1-38.
    Diaconis, P. and Kemperman, J. (1996) Some new tools for Dirichlet priors. In J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith (eds.), Bayesian Statistics 5, pp. 97-106. Oxford University Press.
    Dickey, J.M., Jiang, T.J., and Kuo, K.-L. (2008), Functionals of a Ferguson-Dirichlet process. Preprint.
    Epifani, I., Guglielmi, A., and Melilli, E. (2006) A stochastic equation for the law of the random Dirichlet variance. Statist. Probab. Lett., 76 , 495-502.
    Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1953) Higher Transcendental Functions, vol. I. New York: McGraw-Hill.
    Ferguson, T.S. (1973) A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209-230.
    Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85, 398-409.
    Gourieroux, C. and Montfort, A. (1979) On the characterization of a joint probability distribution by conditional distributions. J. Econometrics, 10, 115-118.
    Gradshteyn, I.S. and Ryzhik, I.M. (2000) Table of Integrals, Series, and Products, 6th ed. New York: Academic Press.
    Grobner, W. and Hofreiter, W. (1973) Integraltafel, Vol. 2, 5th ed. New York: Springer-Verlag.
    Hannum, R.C., Hollander, M., and Langberg, N.A. (1981) Distributional results for random functionals of a Dirichlet process. Ann. Probab., 9, 665-670.
    Hjort, N.L. and Ongaro, A. (2005) Exact inference for random Dirichlet means. Stat. Inference Stoch. Process., 8, 227-254.
    Jiang, J. (1988) Starlike functions and linear functions of a Dirichlet distributed vector. SIAM J. Math. Anal., 19, 390-397.
    Jiang, T.J. (1991) Distribution of random functional of a Dirichlet process on the unit disk. Statist. Probab. Lett., 12, 263-265.
    Jiang, T.J., Dickey, J.M., and Kuo, K.-L. (2004) A new multivariate transform and the distribution of a
    random functional of a Ferguson-Dirichlet process.
    Stochastic Process. Appl., 111, 77-95.
    Jiang, T.J. and Kuo, K.-L. (2008a), Distribution of a random functional of a Ferguson-Dirichlet process over the unit sphere. To appear in Electron. Comm. Probab..
    Jiang, T.J. and Kuo, K.-L. (2008b), The inversion formula of the c-characteristic function and its applications.
    Preprint.
    Kuo, K.-L. (2002) Some applications of multivariate c-transformations. Master thesis, Department of Mathematical Sciences, National Chengchi University.
    Kuo, K.-L., Song, C.-C., and Jiang, T.J. (2008a),
    Compatibility of discrete conditionals in higher dimensions. Preprint.
    Kuo, K.-L., Song, C.-C., and Jiang, T.J. (2008b), Compatible continuous conditionals and an application on normal conditionals. Preprint.
    Kuo, K.-L., Song, C.-C., and Jiang, T.J. (2008c), Generalized inverse Bayes formula for compatible conditional distributions. Preprint.
    Lijoi, A. and Regazzini, E. (2004) Means of a Dirichlet process and multiple hypergeometric functions. Ann. Probab., 32, 1469-1495.
    Liu, J.S. (1996) Discussion of "Statistical Inference and Monte Carlo Algorithms" by G. Casella. Test, 5, 305-310.
    Lord, R.D. (1954) The use of the Hankel transformations in statistics. I. General theory and example. Biometrika, 41, 44-55.
    Minc, H. (1988) Nonnegative Matrices. New York: Wiley.
    Nerlove, M. and Press, S.J. (1986) Multivariate log-linear probability models in econometrics. In Advances in Statistical Analysis and Statistical Computing (Edited by Mariano, R. S.), 117-171. Greenwich, CT: JAI Press.
    Ng, K.W. (1995) Explict formulas for unconditional pdf.
    Research Report, No. 82 (revised). Department of Statistics, University of Hong Kong.
    Ng, K.W. (1997) Inversion of Bayes formula: explict formulae
    for unconditional pdf. In Advance in the Theory and Practice in Statistics (Edited by Johnson, N. L. and Balakrishnan, N.), 571-584, New York: Wiley.
    Perez-Villalta, R. (2000) Variables finitas condicionalmente especificadas. Questioo, 24, 425-448.
    Provost, S.B. and Cheong, Y.-H. (2000) On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist., 28, 417-425.
    Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I. (1986)
    Integrals and Series, Vol. 3. New York: Gordon and Breach Science Publishers.
    Rao, C.R. (1973) Linear Statistical Inference and Its Applications, New York: Wiley.
    Regazzini, E., Guglielmi, A., and Di Nunno, G. (2002)
    Theory and numerical analysis for exact distributions of
    functionals of a Dirichlet process. Ann. Statist., 30, 1376-1411.
    Song, C.-C., Li, L.-A., Chen, C.-H., Jiang, T.J., and Kuo, K.-L. (2006), Compatibility of finite discrete conditional distributions. Under revision.
    Sumner, D.B. (1949) An inversion formula for the generalized Stieltjes transform. Bull. Amer. Math. Soc., 55, 174-183.
    Tan, M., Tian, G.-L. and Ng, K. W. (2003).A noniterative sampling method for computing posteriors in the structure of EM-type algorithms. Statist. Sinica, 13, 625-639.
    Tanner, M.A. and Wong, W.H. (1987) The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc., 82, 528-540.
    Tian, G.-L., Ng, K.W., and Geng, Z. (2003) Bayesian computation for contingency tables with incomplete cell-counts. Statist. Sinica, 13, 189-206.
    Tian, G.-L. and Tan, M. (2003) Exact statistical solutions using the inversion Bayes formulae. Statist. Probab. Lett., 62, 305-315.
    Tian, G.-L., Tan, M. and Ng, K.W. (2007) An exact non-iterative sampling procedure for discrete missing data problems. Statist. Neerlandica, 61, 232-242.
    Weisstein, E.W. (2005) Permutation Matrix. From MathWorld-A Wolfram Web Resource.
    http://mathworld.wolfram.com/PermutationMatrix.html
    Widder, D.V. (1946) The Laplace Transform. Princenton University Press.
    Yamato, H. (1984) Characteristic functions of means of distributions chosen from a Dirichlet process. Ann. Probab., 12, 262-267.
    Zayed, A.I. (1996) Handbook of function and generalized function transformations. New York: CRC Press.
    Description: 博士
    國立政治大學
    應用數學研究所
    91751501
    96
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0917515011
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    51501101.pdf69KbAdobe PDF2716View/Open
    51501102.pdf294KbAdobe PDF2806View/Open
    51501103.pdf349KbAdobe PDF2730View/Open
    51501104.pdf359KbAdobe PDF2802View/Open
    51501105.pdf232KbAdobe PDF21263View/Open
    51501106.pdf187KbAdobe PDF21048View/Open
    51501107.pdf297KbAdobe PDF2964View/Open
    51501108.pdf331KbAdobe PDF2965View/Open
    51501109.pdf396KbAdobe PDF2861View/Open
    51501110.pdf295KbAdobe PDF21130View/Open
    51501111.pdf86KbAdobe PDF2778View/Open
    51501112.pdf139KbAdobe PDF21370View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback