English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50938741      Online Users : 959
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32601
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32601


    Title: 選擇權交易策略的整數線性規劃模型
    Option Trading Strategies with Integer Linear Programming
    Authors: 楊靜宜
    Contributors: 劉明郎
    楊靜宜
    Keywords: 選擇權交易策略
    整數線性規劃
    選擇權套利機會
    options trading strategies
    integer linear programming
    options arbitrage opportunities
    Date: 2003
    Issue Date: 2009-09-17 13:49:38 (UTC+8)
    Abstract: 投資者面對到期日相同的一序列不同履約價格的選擇權時,應如何建立最佳的組合交易策略,這個問題雖已有許多標準的交易公式可依循,但這些標準的交易策略無法全面涵蓋複雜多變的組合策略。本論文提出整數線性規劃模型用來建立選擇權的最佳交易策略。模型針對到期日相同的買權、賣權如何買賣的組合,建立最佳交易策略。若我們預期在到期日時,標的股價將會落在某一範圍內,則我們可修改原來的規劃模型配合此項預期,以尋求最佳的交易策略。最後,我們以Ericsson的選擇權為例,驗証本模型的效能。
    The problem of how to construct the optimal combination trading strategy for investors when they face a series of options of different exercise prices on the same maturity date can be solved by many standard trading rules. Yet these standard trading rules cannot completely cover the complex and highly changeable combination strategy. This thesis proposes an integer linear programming (ILP) model to construct the optimal trading strategy for option portfolio selection. This model focuses on constructing the optimal strategy for an option portfolio of call- and put-options on the same maturity date. Given the investor`s belief of the stock price, we also provide an extended ILP model to include this belief. Finally, an empirical study will be presented by using the ILP model applied to the Ericsson`s call and put options.
    Reference: Bachelier, L. (1900), Theorie de la speculation, Annales Sciences de L`Ecole Normale Superieure 17, 21-86.
    Barone-Adesi, G. and R. Whaley (1987), Efficient Analytic Approximation of American Option Values, Journal of Finance 42(2), June, 301-320.
    Ben Ghalia, M. and P. P. Wang (2000), Intelligent System to Support Judgmental Business Forecasting: the Case of Estimating Hotel Room Demand, IEEE Transactions on Fuzzy Systems 8(4), August, 380-397.
    Black, F. and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81(3), 637-659.
    Boness, A. James (1964), Elements of a Theory of Stock-option Value, Journal of Political Economy, 72, 163-175.
    Dert, D. and B. Oldenkamp (2000), Optimal Guaranteed Return Portfolios and the Casino Effect, Operations Research 48(5), 768-775.
    Draper, J. and K.W. Fung (2002), A Study of Arbitrage Efficiency between the FTSE-100 Index Futures and Options Contracts, Journal of Future Market 22, 31-58.
    Geske, R. (1979), A Note on an Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends, Journal of Financial Economics 7, 375-380.
    Hurry, D., A. T. Miller, and E. H. Bowman (1992), Calls on High Technology: Japanese Exploration of Venture Capital Investment in the United States, Strategic Management Journal 13, 85-101.
    Ingersoll, J. and S. Ross (1992), Waiting to Invest: Investment and Uncertainty, Journal of Business 65(1), 1-29.
    Lee, J. H. and N. Nayar (1993), A Transactions Data Analysis of Arbitrage Between Index Options and Index Futures, Journal of Futures Markets 13, 889-902.
    MacMillan, L. W. (1986), Analytic Approximation for the American Put Option, Advances in Futures and Options Research 1, 119-139.
    Majd, S. and R. Pindyck (1987), Time to Build Option Value and Investment Decision, Journal of Financial Economics 18(1), 7-27.
    McDonald, R. and D. Siegel (1985), Investment and the Valuation of Firms when There is an Option to Shut Down, International Economic Review 26(2), 331-349.
    Merton, R. C. (1973), Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, Spring, 141-183.
    Merton, R. C., M. S. Scholes, and M. L. Gladstein (1978), The Returns and Risk of Alternative Call Option Portfolio Strategies, Journal of Business 51, 183-241.
    Myers, S. C. (1977), Determinants of Corporate Borrowing, Journal of Financial Economics 5(2), November, 147-175.
    Myers, S. C. and S. Majd (1990), Abandonment Value and Project Life, Advances in Futures and Options Research 4, 1-21.
    Paddock, J., D. Siegel, and J. Smith (1988), Option Valuation of Claims on Physical Assets: The Case of Offshore Petroleum Leases, Quarterly Journal of Economics 103(3), 479-508.
    Papahristodoulou, C. (2004), Option Strategies with Linear Programming, European Journal of Operational Research 157, 246-256.
    Quigg, L. (1993), Empirical Testing of Real Option-Pricing Model, The Journal of Finance XLVIII (June), 621-639.
    Rendleman, R. J. (1995), An LP Approach to Option Portfolio Selection, Advances in Futures and Options Research 8, 31-52.
    Roll, R. (1977), An Analytical Formula for Unprotected American Call Options on Stocks with Known Dividends, Journal of Financial Economics 5, 251-258.
    Samuelson, P. A. (1965), Rational Theory of Warrant Pricing, Industrial Management Review 6, Spring, 13-31
    Sprenkle, Case M. (1964), Warrant Prices as Indicators of Expectations and Preferences, In The Random Character of Stock Market Prices, ed. Paul H. Cootner, Cambridge, MIT Press, 412-474.
    Teisberg, E. O. (1994), An Option Valuation Analysis of Investment Choices by a Regulated Firm, Management Science 40(4), 535-548.
    Trigeorgis, L. and S. P. Mason (1987), Valuing Managerial Flexibility, Midland Corporate Finance Journal 5(1), 14-21.
    Whaley, R. (1981), On the Valuation of American Call Options on Stocks with Known Dividends, Journal of Financial Economics 9, 207-212.
    林問一、楊和利、蔡佩珊(2003),台灣指數期貨與指數選擇權之套利效率性,現代財務論壇學術研討會。
    林筠(1994),期貨與選擇權避險效果評估指標,台大管理論叢 第五卷第一期,79-98。
    陳威光(2001),選擇權:理論•實務與應用,智勝文化。
    陳嘉添(2002),買權賣權評價理論之套利研究:台指選擇權對台指期貨與交易所買賣基金對台指選擇權,台灣大學財務金融學研究所碩士論文。
    鄭凱明(1998),波動度選擇權套利分析與策略:應用於香港衍生性金融市場, 政治大學金融研究所碩士論文。
    Description: 碩士
    國立政治大學
    應用數學研究所
    90751006
    92
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0907510061
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    51006101.pdf73KbAdobe PDF2786View/Open
    51006102.pdf87KbAdobe PDF2826View/Open
    51006103.pdf97KbAdobe PDF2756View/Open
    51006104.pdf126KbAdobe PDF21246View/Open
    51006105.pdf166KbAdobe PDF24516View/Open
    51006106.pdf211KbAdobe PDF21309View/Open
    51006107.pdf134KbAdobe PDF2818View/Open
    51006108.pdf135KbAdobe PDF2749View/Open
    51006109.pdf111KbAdobe PDF2788View/Open
    51006110.pdf94KbAdobe PDF21029View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback