English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52520074      Online Users : 436
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32600
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32600


    Title: 同倫擾動法對於范德波爾方程的研究
    Homotopy Perturbation Method for Van Der Pol Equation
    Authors: 劉凱元
    Liu, Kai-yuan
    Contributors: 蔡隆義
    Tsai, Long-yi
    劉凱元
    Liu, Kai-yuan
    Keywords: 擾動法
    同倫
    范德波爾方程
    Perturbation Method
    Homotopy
    Van Der Pol Equation
    Date: 2004
    Issue Date: 2009-09-17 13:49:30 (UTC+8)
    Abstract: 在這篇論文中,我們探討了在任何正參數之下,范德波爾方程的極限環結果。藉由改良後的同倫擾動方法,我們求得了一些極限環的近似結果。
    相對於傳統的擾動方法,這種同倫方法在方程中並不受限於小的參數。除此之外,我們也設計了一個演算法來計算極限環的近似振幅及頻率。
    In this thesis, we study the limit cycle of van der Pol equation for parameter ε>0. We give some approximate results to the limit cycle by using the modified homotopy perturbation technique. In constract to the traditional perturbation methods, this homotopy method does not require a small parameter in the equation. Besides, we also devise a new algorithm to find the approximate amplitude and frequency of the limit cycle.
    Reference: [1] Andersen, C.M. and J.F. Geer, Power series expansions for the frequency and period of the limit cycle of the van der Pol equation, SIAM Journal on Applied Mathematics 42, pp. 678-693, (1982).
    [2] Buonomo, A., The periodic solution of van der Pol`s equation, SIAM Journal on Applied Mathematics 59, 1, pp156-171, (1998).
    [3] Dadfar, M.B., J. Geer, and C.M. Andersen, Perturbation analysis of the limit cycle of the free van der Pol equation, SIAM Journal on Applied Mathematics 44, pp. 881-895, (1984).
    [4] Ferdinand Verhulst, Nonlinear differential equations and dynamical systems, Springer-Verlag Berlin Heidelberg New York, (1996).
    [5] He, J.H., Homotopy perturbation technique, Computer Methods in Applied Mechanics Engineering 178, pp.257-262, (1999).
    [6] He, J.H., Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I: expansion of a constant, International Journal of Non-Linear Mechanics 37, pp. 309 -314, (2002).
    [7] He, J,H, Modified Lindstedt Poincar□ methods for some strongly non-linear oscillations Part II: a new transformation, International Journal of Non-Linear Mechanics 37, pp. 315-320, (2002).
    [8] He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135, pp. 73-79, (2003).
    [9] Liao, S.J., An approximate solution technique not depending on small parameters: a special example, International Journal of Nonlinear Mechanics 30, 371-380, (1995).
    [10] Li□nard, A.M., □tude des oscillations entretenues, Revue G□n□rale de l`□lectricit□ 23, pp. 901-912 and pp. 946-954, (1928).
    [11] Lin, C.C., Mathematics applicated to deterministic problems in natural sciences, Macmillan, New York, (1974).
    [12] 劉秉正, 非線性動力學與混沌基礎, 徐氏基金會, (1998).
    [13] Nayfeh, A.H., Introduction to Perturbation Techniques, Wiley, New York, (1981).
    [14] Nayfeh, A.H., Problems in Perturbation, Wiley, New York, (1985).
    [15] Ronald. E. Mickens. An Introduction to Nonlinear Oscillations, Combridge University Press, (1981).
    [16] Shih, S.D., On periodic orbits of relaxation oscillations, Taiwanese Journal of Mathematics 6, 2, pp. 205-234, (2002).
    [17] Van der Pol, B., On "relaxation-oscillations," Philosophical Magazine, 2, pp. 978-992, (1926)
    [18] Urabe, M., Periodic solutions of van der Pol`s equation with damping coefficient λ = 0 - 10, IEEE Transactions Circuit Theory, CT-7, pp. 382--386, (1960).
    Description: 碩士
    國立政治大學
    應用數學研究所
    90751001
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0907510012
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    51001201.pdf67KbAdobe PDF2797View/Open
    51001202.pdf93KbAdobe PDF2691View/Open
    51001203.pdf28KbAdobe PDF2640View/Open
    51001204.pdf97KbAdobe PDF21146View/Open
    51001205.pdf150KbAdobe PDF2728View/Open
    51001206.pdf119KbAdobe PDF2764View/Open
    51001207.pdf198KbAdobe PDF21061View/Open
    51001208.pdf164KbAdobe PDF2784View/Open
    51001209.pdf135KbAdobe PDF2790View/Open
    51001210.pdf99KbAdobe PDF2808View/Open
    51001211.pdf85KbAdobe PDF2835View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback