Reference: | [1] R. P. Agarwal and F. H. Wong, Existence of positive solutions for higher order boundary value problems, Nonl. Stud., 5(1998), 15-24. [2] R. P. Agarwal and F. H. Wong, Existence of positive solutions for non-positive higher order BVP’s, Comp. and Appl. Math., 88(1998), 3-14. [3] R. P. Agarwal and F. H. Wong, An application of topological transervality with respect to non-positive higher order BVP’s, Appl. Math. and Compu., 99(1999), 167-178. [4] R. P. Agarwal and D. O’Regan, Some new existence results for differential and integral equations, Nonl. Anal., 29(1997), 679-692. [5] R. P. Agarwal and D. O’Regan, Twin solutions to singualr Dirichlet problems, J. Math. Anal. Appl., 240(1999), 433-445. [6] R. P. Agarwal, Boundary value problems for differential equations with deviating arguments, J. Math. Phy. Sci., 6(1992), 425-438. [7] R. P. Agarwal and F. H. Wong, Upper and lower solutions for higher order discrete boundary value problems, Math. inequ. and appl., 1(1998), 551-557. [8] R. P. Agarwal, F. H. Wong and S. L. Yu, Existence of solutions to (k; n¡k¡2) discrete boundary value problems, Math. and Comp. Modell., 28(1998), 7-20. [9] R. P. Agarwal and F. H. Wong, Existence of solutions to (k; n¡k¡2) boundary value problems, Applied Mathematics and Computation, 104(1999), 33-55. [10] R. P. Agarwal, D. O’Regan and P. J. Wong, Positive solutions of Differential, difference, and integral equations, Kluwer Academic, Dordrecht, (1999). [11] V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositive BVP’s, Proc. Amer. math. Soc., 124(1996), 757-763. [12] R. P. Avery and J. Henderson, Three symmetric positive solutions for a second order boundary value problem, Appl. Math. lett., 13(2000), 1-7. [13] N. Azbelev, V. Maksimov and L. Rakhmatullina, Introduction to the theory of functional differential equations, (in Russian), Nauka, Moskow, (1991). [14] Z. Bai, W. Ge and Y. Wang, Multiplicity results for some second-order fourpoint boundary-value problems, Nonl. Anal., 60(2005), 491-500. [15] P. B. Bailey, L. F. Shampine and P. E. Waltman, Nonlinear Two-point Boundary Value Problems, Academic Press. New York, (1968). [16] C. Bandle and M. K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Math. Phys., 40(1989), 245-257. [17] Y. S. Choi and G. S. Ludford, An unexpected stability result of the nearextinction diffusion flame for non-unity Lewis numbers, Q. J. Mech. Appl. Math., 42 part 1(1989), 143-158. [18] A. Constantin, Existence of positive solutions of quasilinear ellitpic equations, Bull Austral, Math. Soc., 54(1996), 147-154. [19] A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl., 213(1997), 334-339. [20] E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns., 37(1980), 404-437. [21] H. Dang and K. Schmit, Existence of positive solutions for semiliear elliptic equations in annular domain, Diff. and Integ. Equs., 7(1994) 747-758. [22] N. Dunford, J. T. Schwartz Linear Operators. General theory, 1, Interscience, (1958). [23] J. Ehme and J. Henderson, Functional boundary value problems and smoothness of solutions, Nonl. Anal., 24(1996), 139-148. [24] P. W. Eloe and J. Henderson, Positive solutions and nonlinear (k,n-k) conjugate eigenvalue problem, Diff. Equ. Dynam. Syst., 6(1998), 309-317. [25] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), 743-748. [26] L. H. Erbe, Q. K. Kong, Boundary value problems for singular second order functional differential equations, J. Comput. Appl. Math., 53(1994), 377-388. [27] W. Feng and J. R. L. Webb, Solvability of a three point nonlinear boundary value problems at resonance, Nonl. Anal. T.M.A., 30:6(1997), 3227-3238. [28] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, (1983). [29] J. R. Graef and B. Yang, On a nonlinear boundary-value problem for fourthorder equations, Appl. Anal., 72(1999), 139-448. [30] J. R. Graef and B. Yang, Existence and non-existence of positive solutions of fourth-order nonlinear boundary-value problem, Appl. Anal., 74(2000), 201-214. [31] L. J. Grimm and K. Schmitt, Boundary value problems for differential equations with deviating arguments, Aequationes Math., 4(1970), 176-190. [32] G. B. Gustafson and K. Schmitt, Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations, J. Diff. Equations., 12(1972), 129-147. [33] D. Guo and V. Lakshmikantham, Nonlinear problems in abstract cone, Academic Press, Orlando, FL, (1998). [34] J. K. Hale, Thoery of functional differential equations, Springer, New York, (1977). [35] J. K. Hale and S. M. V. Lunel, Introduction to functional differential equations, Springer-Verlag, New York, (1993). [36] J. Henderson, Singular boundary value problems for difference equations, Dynamic Systems and Appl., 1(1992), 271-282. [37] J. Henderson, Boundary value problems for functional differential equations, World Scientific, (1982). [38] J. Henderson and W. Yin, Positive solutions and nonlinear eugenvalue problems for functional differential equations, Appl. Math. Letters, 12(1999), 63-68. [39] G. L. Karakostas, K. G. Marvridis, and P. Ch. Tsamatos, Multiple positive solutions for a funcational second-order boundary value problem, J. Math. Anal. Appl., 282(2003), 567-577. [40] P. Kelevedjiev, Existence of solutions for two-point boundary value problems, Nonl. Analysis T.M.A., 22(1994), 217-224. [41] P. Kelevedjiev, Nonexistence of solutions for two-point boundary value problems, Nonl. Analysis T.M.A., 22(1994), 225-228. [42] V. Kolmanovskii and A. Myshkis, Applied theory of functional differential equations, Kluwer Academic, Dordrecht, (1992). [43] M. A. Krasnosekskii, Positive solutions of operations, Noordhoff, Groningen, (1964). [44] J. W. Lee and D. O’Regan, Nonlinear boundary value problems in Hilbert spaces, Jour. Math. Anal. Appl., 137(1989), 59-69. [45] Y. Li, On the existence and nonexistence of positive solutions for nonlinear Sturm-Liouville boundary value problems, J. Math. Anal. Appl., 304(2005), 74-89. [46] X. Liu, J. Qiu and Y. Guo Three positive solutions for second-order m-point boundary value problems, Appl. Math. Comput., 156(2004), 733-742. [47] R. Ma, Positive solutions for boundary value problems of functional differential equations, Appl. Math. Comput., 193(2007), 66-72. [48] R. Y. Ma, Positive solutions of nonlinear three point boundary value problem, Electronic J. Diff. Equs., 34(1998), 1-8. [49] R. Y. Ma, Existence theorems for a second order three point boundary value problem, J. Math. Anal. Appl., 212(1997), 430-442. [50] R. Y. Ma and H. Y.Wong, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59(1995), 225-231. [51] R. Y. Ma, J. Zhang and S. Fu, The method of lower and upper solutions for forth order two-point boundary-value problem, J. Math. Anal. Appl., 215(1997), 415-422. [52] De-xiang Ma and Wei-gao Ge, Existence theorems of positive solutions for a fourth-order three-point boundary value problem, Taiwanese Journal of Mathematics, 10:6(2006), 1557-1573. [53] V. Nemyckii, The fixed point method in analysis, Amer. Math. Soc. Transl., 34(1963), 1-37. [54] S. K. Ntouyas, Y. G. Sficas and P. Ch. Tsamatos, An existence principle for boundary value problems for second order functional differential equations, Nonlinear Anal., 20:3(1993), 215-222. [55] E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl., 75(1980), 121-133. [56] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 109(1994), 1-7. [57] Haiyan Wang, Positive periodic solutions of functional differential equations, J. Differ. Equations, 202:4(2004), 354-366. [58] F. H. Wong, W. C. Lian, S. W. Lin and S. L. Yu Existence of periodic solutions of high order differential equations, Math. Computer Modelling, 21(2005), 215- 225. [59] F. H. Wong, An application of Schauder’s fixed point theorem with respect to higher order BVPs, Proc. Amer. Math. Soc., 126(1998), 2389-2397. [60] F. H.Wong, W. C. Lian, S. W. Lin and S. L. Yu, Existence of periodic solutions of high order differential equations, Math. Computer Modelling, 21(2005), 215- 225. [61] Hong-Kun Xu and E.Liz, Boundary value problems for functional differential equations, Nonlinear Anal., 41(2000), 971-988. [62] Q. Yao, Successive iteration and positive solution for nonlinear second-order three-point boundary value problems, Computers Math. Applic., 50(2005), 433- 444. [63] B. G. Zhang and L. Z. Kong, Multiple positive solutions of a class of p- Laplacian equations, Annals Math., 6(2001), 1-6. |