Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/32588
|
Title: | 完全C邊混合超圖的著色多項式 The Chromatic Polynomial of A Mixed Hypergraph with Complete C-edges |
Authors: | 吳仕傑 |
Contributors: | 張宜武 吳仕傑 |
Keywords: | 混合超圖 分離-收縮法 循環的 mixed hypergraph splitting-contraction algorithm circular |
Date: | 2007 |
Issue Date: | 2009-09-17 13:48:14 (UTC+8) |
Abstract: | 在這篇論文中,我們利用分離-收縮法(splitting-contraction algorithm)獲得一個擁有完全C邊以及循環D邊特性的圖之著色多項式。 假如一個混合超圖在點集合上有主要的循環, 使得所有的C邊和D邊包含一個主循環(host cycle)的連接子圖, 則稱此圖為循環的(circular)。 對於每個l≧2, 所有連續l個點會形成一個D邊時, 我們把D記作D_l。 如此一來, 超圖(X,Φ,D_2)就是圖論中n個點的普通循環。 我們先觀察擁有完全C邊和循環D邊的超圖, 利用分離-收縮法的第一步, 找到遞迴關係式並且解它。 然後我們就推廣到一般完全C邊及循環D邊的超圖。 In this thesis, we obtain the chromatic polynomial of a mixed hypergraph with complete C-edges and circular D-edges by using splitting-contraction algorithm. A mixed hypergraph H=(X,C,D) is called circular if there exists a host cycle on the vertex set X such that every C-edge and every D-edge induces a connected subgraph of the host cycle. For each l≧2, we denote D by D_l if and only if every l consecutive vertices of X form a D-edge. Thus the mixed hypergraph (X,Φ,D_2) is a simple classical cycle on n vertices. We observe first a mixed hypergraph with complete C-edges and D_2. By the first step of the splitting-contraction algorithm, we can find out the recurrence relation and solve it. Then we generalize the mixed hypergraph with complete C-edges and circular D-edges. |
Reference: | [1] Voloshin, V. (1993), The mixed hypergraphs, Comput. Sci. J. Moldova, 1, pp. 45-52. [2] Voloshin, V. and Voss, H.-J. (2000), Circular Mixed hypergraphs I: colorability and unique colorability, Congr. Numer., 144, pp. 207-219. [3] Voloshin, V. (2002), Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, American Mathematical Society. [4] West, D.B. (2001), Introduction to Graph Theory, 2nd ed., Prentice Hall. |
Description: | 碩士 國立政治大學 應用數學研究所 94751011 96 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0094751011 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|