政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32585
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113451/144438 (79%)
Visitors : 51299608      Online Users : 875
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32585


    Title: 均勻混合超級圖的唯一著色
    The Unique colorability of a Uniform Mixed Hypergraph
    Authors: 游喬任
    Contributors: 張宜武
    游喬任
    Keywords: 均勻混合超級圖
    唯一著色
    uinform mixed hypergraph
    uniquely colorable
    Date: 2006
    Issue Date: 2009-09-17 13:47:55 (UTC+8)
    Abstract: 在本篇論文,我們去找一個唯一著色的均勻混合超級圖的點數及邊數的下界。
    我們證明為一著色的均勻混合超級圖的點數必須超過(l-1)(m-1)+1而且我們提出一個方法來建構為一著色的均勻混合超級圖。如果一個混合超圖是個D為空集合的r-均勻超級圖,當r=2則它是唯一著色的。否則,D為空集合的均勻超級圖不會是唯一著色的。我們介紹兩種有系統的方法建構唯一著色的均勻混合超級圖並且達到我們的邊界。首先,我們是著保持均勻混合超級圖的唯一著色下去減少D邊的個數。然後我們減少D邊的個數。我們考慮r均勻的C超圖和D超圖並找他們邊的個數的範圍。
    In this thesis, we find the lower bounds of number of vertices and edges of
    uniform mixed hypergraph which is uniquely colorable. We show that the size of vertex set of uniform mixed hypergraphs with unique coloring is more than (l-1)(m-1)+1 and we come up a way to construct uniquely colorable uniform mixed hypergraphs. If a mixed hypergraph is an r-uniform hypergraph with D empty, then it is uniquely colorable when r=2. Otherwise, an r-uniform hypergraph with D empty is not uniquely colorable. We will introduce two systematic ways to construct a uniform mixed hypergraph which is uniquely colorable and achieves our bounds. First,we reduce the number of C-edges such that uniform mixed hypergraphs keep being uniquely colorable. Then we reduce the number of D-edges. We consider r-uniform C-hypergraphs and D-hypergraphs and find the bounds on their number of edges.
    Reference: 1. V.I. Voloshin. The mixed hypergraphs. Comput. Sci. J.
    Moldova 1 (1993), 45-52.
    2. Zs. Tuza, V.I. Voloshin, H. Zhou. Uniquely colorable mixed hypergraphs. Discrete Math., to appear.
    3. Zs. Tuza, V.I. Voloshin. Uncolorable mixed hypergraphs.
    Discrete Appl. Math. 99 (2000), 209-227.
    Description: 碩士
    國立政治大學
    應用數學研究所
    94751003
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094751003
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File Description SizeFormat
    100301.pdf60KbAdobe PDF2600View/Open
    100302.pdf18KbAdobe PDF2613View/Open
    100303.pdf58KbAdobe PDF2667View/Open
    100304.pdf33KbAdobe PDF2675View/Open
    100305.pdf51KbAdobe PDF2625View/Open
    100306.pdf50KbAdobe PDF2746View/Open
    100307.pdf141KbAdobe PDF2719View/Open
    100308.pdf20KbAdobe PDF2638View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback