English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50800134      Online Users : 632
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32582
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32582


    Title: 半純函數的唯一性
    Some Results on the Uniqueness of Meromorphic Functions
    Authors: 陳耿彥
    Chen, Keng-Yan
    Contributors: 陳天進
    Chen, Ten-Ging
    陳耿彥
    Chen, Keng-Yan
    Keywords: 值分佈理論
    半純函數
    value distribution theory
    meromorphic function
    Date: 2007
    Issue Date: 2009-09-17 13:47:35 (UTC+8)
    Abstract: 在這篇論文裡,我們利用值分佈的理論來探討半純函數的共值與唯一性的問題,本文包含了以下的結果:將Jank與Terglane有關三個A類中的半純函數唯一性的結果推廣到任意q個半純函數的情形;證明了C. C. Yang的一個猜測;建構了一類半純函數恰有兩個虧值,而且算出它們的虧格;將
    Nevanlinna 五個值的定理推廣至兩個半純函數部分共值的情形;探討純函數
    與其導數的共值問題;最後,證明了兩個半純函數共四個值且重數皆不同的定
    理。
    In this thesis, we study the sharing value problems and the
    uniqueness problems of meromorphic functions in the theory of value distribution. In fact, this thesis contains the following results: We generalize a unicity condition of three meromorphic functions given by Jank and Terglane in class A to the case of arbitrary q meromorphic functoins. An elementary proof of a conjecture of C. C. Yang is provided. We construct a class of meromorphic functions with exact two deficient values and their deficiencies are explicitly computed. We generalize the Nevanlinna`s five-value theorem to the cases that two meromorphic functions partially share either five or more values, or five or
    more small functions. In each case, we formulate a way to measure how far these two meromorphic functions are from sharing either values or small functions, and use this measurement to prove a uniqueness theorem. Also, we prove some uniqueness theorems on entire functions that share a pair of values (a,-a) with their derivatives, which are reformulations of some important results about uniqueness of entire functions that share values with their derivatives. Finally, we prove that if two distinct non-constant meromorphic functions $f$ and $g$ share four distinct values a_1, a_2, a_3, a_4 DM such that each a_i-point is either a (p,q)-fold or (q,p)-fold point of f and g, then (p,q) is either (1,2) or (1,3) and f, g are in some particular forms.
    Reference: [1] W. W. Adams and E. G. Straus, Non-Archimedian analytic
    functions taking the same values at the same points,
    Ill. J. Math., 15 (1971), 418-424.
    [2] G. Brosch, Eindeutigkeitssatze fur meromorphe
    funktionen, Thesis, Technical University of Aachen,
    1989.
    [3] J. Clunie, On integral and meromorphic functions,
    J. London Math. Soc., 36 (1962), 17-27.
    [4] C. T. Chuang and C. C. Yang, Fixed points and
    factorization theory of meromorphic functions, Peking
    Univ. Press, 1988.
    [5] W. Doeringer, Exceptional value of differential
    polynomial, Pacific J. Math., 98 (1982), 55-62.
    [6] G. Frank and W. Ohlenroth, Meromorphe funktionen, die
    mit einer ihrer ableitungen werte teilen, Complex
    Variables, 6 (1986), 23-37.
    [7] F. Gross, Factorizatioin of meromorphic functions, U.
    S. Government Printing Office, Washington, D. C.,1972.
    [8] G. G. Gundersen, Meromorphic functions that share three
    or four values, J. London Math. Soc., 20 (1979),
    457-466.
    [9] G. G. Gundersen, Meromorphic functions that share finite
    values with their derivative, J. Math. Anal. Appl.,
    75 (1980), 441-446.
    [10] G. G. Gundersen, Meromorphic functions that share four
    values, Transactions of the American Mathematical
    Society, 277(2) (1983), 545-567.
    [11] G. G. Gundersen and L. Z. Yang, Entire functions that
    share one value with one or two of their derivatives,
    J. Math. Anal. Appl., 223 (1998), 88-95.
    [12] W. K. Hayman, Meromorphic functions, Clarendon Press,
    Oxford, 1964.
    [13] D. Hans and S. Gerald, Zur charakterisierung von
    polynomen durch ihre Null-und Einsstellen, Arch.
    Math., 48 (1987), 337-342.
    [14] G. Jank and N. Terglane, Meromorphic functions sharing
    three values, Math. Pannonica, 2 (1990), 37-46.
    [15] P. Li, Entire functions that share one value with their
    linear differential polynomials, Kodai Math. J., 22
    (1999), 446-457.
    [16] P. Li and C. C. Yang, Uniqueness theorems on entire
    functions and their derivatives, J. Math. Anal. Appl.,
    253 (2001), 50-57.
    [17] Y. Li and J. Qiao, The uniqueness of meromorphic
    functions concerning small functions, Sci. China Ser.
    A, 43(6) (2000), 581-590.
    [18] E. Mues, Meromorphic functions sharing four values,
    Complex Variables, 12 (1989), 169-179.
    [19] E. Mues, G. Jank and L. Volkmann, Meromorphe
    funktionen, die mit ihrer ersten und zweiten ableitung
    einen endichen wert teilen, Complex Variables Theory
    Appl. 6(1986), 51-71.
    [20] E. Mues and N. Steinmetz, Meromorphe funktionen, die
    mit ihrer abelitung werte teilen, Manuscripta Math.
    29 (1979), 195-206.
    [21] H. Milloux, Les fonctions meromorphes et leurs
    derivees, Paris, 1940.
    [22] S. S. Miller, Complex analysis: Proceedings of the SUNY
    Brockport Conference, Dekker, New York and Basel,
    1978, p.169.
    [23] T. T. Moh, On a certain group structure for
    polynomials, Proc. Amer. Math. Soc., 82 (1981),
    183-187.
    [24] K. Ninno and M. Ozawa, Deficiencies of an entire
    algebroid function, Kodai Math. Sem. Rep., 22 (1970),
    98-113.
    [25] R. Nevanlinna, Le theoreme de Picard-Borel et la
    theorie des fonctions meromorphes, Gauthiers-Villars,
    Paris, 1929.
    [26] R. Nevanlinna, Einige eindueutigkeitssatze in der
    theorie der mermorphen funktionen, Acta Math., 48
    (1926), 367-391.
    [27] E. Picard. Memoire sur les fonctions entieres, Ann.
    Ecole. Norm., 9(1880), 145-166.
    [28] G. Polya. On an integral function of an integral
    function, J. London Math. Soc., 1(1926), p.12.
    [29] L. Ruble and C. C. Yang, Values shared by entire
    functions and their derivatives, Complex Analysis,
    Kentucky, 1976 (Berlin),Springer-Verlag, 1977, 101-103.
    [30] M. Reinders, Eindeutigkeitssatze fur meromprphe
    Funktionen, die vier Werte teilen, PhD thesis,
    Universitat Hannover, 1990.
    [31] M. Reinders, Eindeutigkeitssatze fur meromorphe
    funktionen, die vier werte teilen, Mitt. Math. Sem.
    Giessen, 200 (1991), 15-38.
    [32] M. Reinders, A new example of meromorphic functions
    sharing four values and a uniqueness theorem, Complex
    Variables, 18 (1992), 213-221.
    [33] N. Steinmetz, Eine Verallgemeinerung des zweiten
    Nevanlinnaschen Hauptsatzes, J. Reine Angew. Math.,
    368 (1986) 134-141.
    [34] S. P. Wang, On meromorphic functions that share four
    values, J. Math. Anal. Appl., 173 (1993), 359-369.
    [35] H. X. Yi and C. C. Yang, Uniqueness theory of
    meromorphic functions, Pure and Applied Math.
    Monographs No. 32, Science Press, Beijing, 1995.
    [36] C. C. Yang, Some problems on polynomyals and
    transcendental entire functions, Adv. Math.
    (a Chinese Journal), 13 (1984), 1-3.
    [37] C. C. Yang. On deficiencies of differential
    polynomials, Math. Z., 116 (1970), 197-204.
    [38] L. Yang, Value distribution theory, Berlin Heidelberg:
    Springer-Verlag, Beijing:Science Press, 1993.
    [39] L. Z. Yang, Solution of a differential equation and its
    applications, Kodai Math. J. 22 (1990), No.3, 458-464.
    [40] Q. D. Zhang, A uniqueness theorem for meromorphic
    functions with respect to slowly growing functions,
    Acta Math. Sinica, 36(6) (1993), 826-833.
    Description: 博士
    國立政治大學
    應用數學研究所
    93751501
    96
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093751501
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75150101.pdf66KbAdobe PDF2637View/Open
    75150102.pdf196KbAdobe PDF2726View/Open
    75150103.pdf245KbAdobe PDF2774View/Open
    75150104.pdf70KbAdobe PDF2751View/Open
    75150105.pdf262KbAdobe PDF2855View/Open
    75150106.pdf74KbAdobe PDF2829View/Open
    75150107.pdf136KbAdobe PDF21027View/Open
    75150108.pdf131KbAdobe PDF2939View/Open
    75150109.pdf126KbAdobe PDF2815View/Open
    75150110.pdf149KbAdobe PDF2974View/Open
    75150111.pdf123KbAdobe PDF21179View/Open
    75150112.pdf152KbAdobe PDF2797View/Open
    75150113.pdf114KbAdobe PDF2897View/Open
    75150114.pdf56KbAdobe PDF21011View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback