政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32569
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113303/144284 (79%)
造访人次 : 50799969      在线人数 : 677
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32569


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/32569


    题名: 4-Caterpillars的優美標法
    Graceful Labelings of 4-Caterpillars
    作者: 吳文智
    Wu, Wen Chih
    贡献者: 李陽明
    吳文智
    Wu, Wen Chih
    关键词: 
    優美圖
    Trees
    graceful labelling
    4-Caterpillars
    4-stars
    日期: 2005
    上传时间: 2009-09-17 13:46:05 (UTC+8)
    摘要: 樹是一個沒有迴路的連接圖。而4-caterpillar是一種樹,它擁有單一路徑連接到數個長度為3的路徑的端點。一個有n個邊的無向圖G的優美標法是一個從G的點到{0,1,2,...,n}的一對一函數,使得每一個邊的標號都不一樣,其中,邊的標號是兩個相鄰的點的編號差的絕對值。在這篇論文當中,我們最主要的目的是使用一個演算法來完成4-caterpillars的優美標法。
    A tree is connected acyclic graph. A 4-caterpillar is a tree with a single path only incident to the end-vertices of paths of length 3. A graceful labelling of an undirected graph G with n edges is a one-to-one function from the set of vertices of G to the set {0,1,2,...,n} such that the induced edge labels are all distinct, where the edge label is the difference between two endvertex labels. In this thesis, our main purpose is to use an algorithm to yield graceful labellings of 4-caterpillars.
    參考文獻: [1] R.E. Aldred and B.D. McKay, Graceful and harmonious
    labellings of trees, Bull. Inst. Combin. Appl., 23 (1998) 69-72.
    [2] R.E. Aldred, J. Siran and M. Siran, A Note on the number of graceful labellings of paths, Discrete Math., 261 (2003) 27-30.
    [3] J.C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, Pitman, London (1979) 18-37.
    [4] J.C. Bermond and D. Sotteau, Graph decompositions and G-design, Proc. 5th British Combinatorics Conference, 1975, Congress. Number., XV (1976) 53-72.
    [5] V. Bhat-Nayak and U. Deshmukh, New families of graceful banana trees, Proc. Indian Acad. Sci Math. Sci., 106 (1996) 201-216.
    [6] G. S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N. Y. Acad. Sci., 326 (1979) 32-51.
    [7] C.P. Bonnington and J. Siran, Bipartite labelling of trees with maximum degree three, Journal of Graph Theory, 31 (1999) 37-56.
    [8] L. Brankovic, A. Rose and J. Siran, Labelling of trees with maximum degree three and improved bound, preprint, (1999).
    [9] H.J. Broersma and C. Hoede, Another equivalent of the graceful tree conjecture, Ars Combinatoria, 51 (1999) 183-192.
    [10] M. Burzio and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Mathematices, 181 (1998) 275-281.
    [11] I. Cahit, R. Cahit, On the graceful numbering of spanning trees, Information Processing Letters, vol. 3, no. 4, pp. (1998) 115-118.
    [12] Y.-M. Chen, Y.-Z. Shih, 2-Caterpillars are graceful. Preprint, (2006).
    [13] W.C. Chen, H.I. Lu and Y.N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bulletin of Mathematics, 21 (1997) 337-348.
    [14] P. Hrnciar, A. Havier, All trees of diameter five are graceful. Discrete Mathematices, 31 (2001) 279-292.
    [15] K.M. Koh, D.G. Rogers and T. Tan, A graceful arboretum: A survey of graceful trees, in Proceedings of Franco-Southeast Asian Conference, Singapore, May 1979, 2 278-287.
    [16] D. Morgan, Graceful labelled trees from Skolem sequences, Proc. of the Thirty-first Southeastern Internat, Conf, on Combin., Graph Theory, Computing (Boca Raton, FL, 2000) and Congressus Numerantium, (2000) 41-48.
    [17] D. Morgan, All lobsters with perfect matchings are graceful, Electronic Notes in Discrete Mathematices, 11 (2002), 503-508.
    [18] A.M. Pastel and H. Raynaud, Les oliviers sont gracieux, Colloq. Grenoble, Publications Universite de Grenoble, (1978).
    [19] A. Rose, On certain valuations of the vertices of graph, Theory of Graphs, International Symposium, Rome, July 1996, Gordon and Breach, N.Y. and Dunod Paris (1967) 349-355.
    [20] J.-G. Wang, D.J. Jin, X.-G. Lu and D. Zhang, The gracefulness of a class of lobster Trees, Mathematical Computer Modelling, 20 (1994) 105-110.
    [21] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc. (1996).
    描述: 碩士
    國立政治大學
    應用數學研究所
    91751009
    94
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0091751009
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    75100901.pdf136KbAdobe PDF21792检视/开启
    75100902.pdf86KbAdobe PDF21747检视/开启
    75100903.pdf69KbAdobe PDF21787检视/开启
    75100904.pdf119KbAdobe PDF21997检视/开启
    75100905.pdf143KbAdobe PDF21731检视/开启
    75100906.pdf148KbAdobe PDF22084检视/开启
    75100907.pdf469KbAdobe PDF22157检视/开启
    75100908.pdf65KbAdobe PDF21693检视/开启
    75100909.pdf136KbAdobe PDF21917检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈