Reference: | [1] S.S. Agayan, Hadamard matrices and their applications, Lecture notes in mathematics, Vol. 1168, Springer-Verlag, Berlin, 1985. [2] R.E.L. Aldred and B.D. McKay, Graceful and harmonious labellings of trees, Bull. Inst. Combin. Appl. 23 (1998), 69-72. [3] R.E.L. Aldred, J. Siran and M. Siran, A note on the number of graceful labellings of paths, Discrete Math. 261 (2003), 27-30. [4] M.D. Atkinson and J.R. Sack, Generating binary trees at random, Inform. Process. Lett. 41 (1) (1992), 21-23. [5] J.C. Bermond and D. Sotteau, Graph decompositions and G-design, Proc. 5th British Combinatorics Conference, 1975, Congressus Numerantium XV (1976),53-72. [6] J.C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, Pitman, London (1979), 18-37. [7] F.R. Bernhart, Catalan, Motzkin, Riordan numbers, Discrete Math. 204 (1999), 73-112. [8] V. Bhat-Nayak and U. Deshmukh, New families of graceful banana trees, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 201-216. [9] C.P. Bonnington and J. Siran, Bipartite labelling of trees with maximum degree three, J. Graph Theory 31 (1999), 7-15. [10] L. Brankovic, A. Rosa, and J. Siran, Labelling of trees with maximum degree three and improved bound, preprint. [11] H.J. Broersma and C. Hoede, Another equivalent of the graceful tree conjecture, Ars Combinatoria 51 (1999), 183-192. [12] M. Burzio and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Math. 181 (1998), 275-281. [13] A. Caley, A theorem on trees, Quart. J. Pure Appl. Math. 23 (1889), 376-378. [The Collected Mathematical Papers of Arthur Caley, Vol. \\textrm{XIII} (Cambrige University Press, 1897), 26-28.] [14] D. Callan, A combinatorial derivation of the number of labelled forests, J. Integer Sequences Vol. 6 (2003), Article 03.4.7 [15] W.-C. Chen, H.-I. Lu, and Y.-N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bulletin of Math. 21 (1997), 337-348. [16] Y.-M. Chen and Y.-Z. Shih, On enumeration of plane forests, preprint. [17] Y.-M. Chen, The Chung-Feller Theorem revisited, submitted. [18] Y.-M. Chen and Y.-Z. Shih, 2-Caterpillars are graceful, submitted. [19] K. L. Chung and W. Feller, On fluctuations in coin-tossing, Proc. Nat. Acad. Sci. USA 35 (1949), 605-608. [20] R. Craigen, Constructing Hadamard matrices with orthogonal pairs, Ars Combinatoria 33 (1992), 57-64. [21] R. Craigen, J. Seberry and Xian-Mo Zhang, Product of four Hadamard matrices, J. Combin. Theory Series A 59 (1992), 318-320. [22] W. de Launey, A product for twelve Hadamard matrices, Australasian J. of Combin. 7 (1993), 123-127. [23] N. Dershowitz and S. Zaks, Enumerations of ordered trees, Discrete Math. 31 (1980), 9-28. [24] N. Dershowitz and S. Zaks, The cycle lemma and some applications, European J. Combinatorics 11 (1990), 35-40. [25] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167-202. [26] J.H. Dinitz and D.R. Stinson, Contemporary Design Theory: A Collection of Surveys, John Wiley and Sons, Inc., 1992. [27] R. Donaghey and L.W. Shapiro, Motzkin numbers, J. Combin. Theory Series A 23 (1977), 291-301. [28] T. Doslic, Morgan trees and Dyck paths, Croatica Chemica Acta CCACAA 75 (4) (2002), 881-889. [29] S.-P. Eu, On the Quadratic Algebric Generating Functions and Combinatorial Structrues , Ph. D. thesis, Department of Mathematics, National Taiwan Normal University, 2003. [30] S.-P. Eu, T.-S. Fu, and Y.-N. Yeh, Refined Chung-Feller Theorems for lattice paths, J. Combin. Theory Series A 112 (2005), 143-162. [31] S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Taylor expansions for Catalan and Motzkin numbers, Advances in Applied Math. 29 (2002), 345-357. [32] S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, Dyck paths with peaks avoiding or restricted to a given set, Studies in Applied Math. 111 (2003), 453-465. [33] S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, Odd or even on plane trees, Discrete Math. 281 (2004), 189-196. [34] J.A. Gallian, A dynamic survey of graph labelling, Electronic J. Combinatorics 5 (2005), #DS6. [35] I. Gessel, Counting forests by descents and leaves, Electronic J. Combinatorics 3 (2) (1996), #R8. [36] S.W. Golomb, How to number a graph, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York (1972), 23-37. [37] J. Hadamard, Resolution d`une question relative aux determinants, Bull. des Sci. Math. 17 (1893), 240-246. [38] S.M. Hegde and S. Shetty, On graceful trees, Applied Mathematics E-Notes 2 (2002), 192-197. [39] P. Hrnciar and A. Haviar, All trees of diameter five are graceful, Discrete Math. 233 (2001), 133-150. [40] C. Huang, A. Kotzig and A. Rosa, Further results on tree labellings, {\\it Utilitas Math. 21c (1982), 31-48. [41] H. Izbicki, Uber Unterbaume eines Baumes, Monatshefte f. Math. 74 (1970), 56-62. [42] K.M. Koh, D.G. Rogers, and T. Tan, On graceful trees, Nanta Math. 10 (1977), 27-31. [43] K.M. Koh, D.G. Rogers, and T. Tan, A graceful arboretum: A survey of graceful trees, in Proceedings of Franco-Southeast Asian Conference, Singapore, May 1979, 2 278-287. [44] J. Labelle and Y.-N. Yeh, Dyck paths of knight moves, Discrete Appl. Math. 24 (1989), 213-221. [45] J. Labelle and Y.-N. Yeh, Generalized Dyck paths, Discrete Math. 82 (1990), 1-6. [46] O. Marrero, Une caracterisation des matrices de Hadamard, Expositiones Mathematicae 17 (1999), 283-288. [47] D. Mishra and P. Panigrahi, Graceful lobsters obtained by partitioning and component moving of branches of diameter four trees, Computers and Mathematics with Applications 50 (2005), 367-380. [48] D. Morgan, Gracefully labelled trees from Skolem sequences, Congressus Numerantium 142 (2000), 41-48. [49] D. Morgan, All lobsters with perfect matchings are graceful, Electronic Notes in Discrete Math. 11 (2002), 503-508. [50] D. Morgan and R. Rees, Using Skolem and Hooked-Skolem sequences to generate graceful trees, J. Combin. Math. and Combin. Computing 44 (2003), 47-63. [51] T.V. Narayana, Cyclic permutation of lattice paths and the Chung-Feller Theorem, Skandinavisk Aktuarietidskrift (1967), 23-30. [52] T.V. Narayana, Lattice path combinatorics with statistical applications, Mathematical Expositions No. 23, University of Toronto Press, Toronto, 1979. [53] H.K. Ng, Gracefulness of a class of lobsters, Notices AMS 7 (1986), 825-05-294. [54] A.M. Pastel and H. Raynaud, Numerotation gracieuse des oliviers, Colloq. Grenoble, Publications Universite de Grenoble (1978), 218-223. [55] G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proceedings of Symposium in Smolenice 1963}, Prague (1964), 162. [56] J. Riordan, Forests of labelled trees, J. Graph Theory 5 (1968), 90-103. [57] J. Riordan, A note on Catalan parentheses, Amer. Math. Monthly 80 (1973), 904-906. [58] J. Riordan, Forests of label-increasing trees, J. Graph Theory 3 (1979), 127-133. [59] F.S. Roberts, Applied Combinatorics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984. [60] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355. [61] A. Rosa, Labelling snakes, Ars Combinatoria 3 (1977), 67-74. [62] A. Rosa and J. Siran, Bipartite labellings of trees and the gracesize, J. Graph Theory 19 (1995), 201-215. [63] S. Seo, A pairing of the vertices of ordered trees, Discrete Math., 241 (2001), 471-477. [64] L.W. Shapiro, A short proof of an identity of Touchard`s concerning Catalan numbers, J. Combin. Theory Series A 20 (1976), 375-376. [65] L.W. Shapiro, Problem 10753, Amer. Math. Monthly 106 (1999), 777. [66] L.W. Shapiro, The higher you go, the older it gets, Congressus Numerantium 138 (1999), 93-96. [67] L.W. Shapiro, The higher you go, the older it gets, Congressus Numerantium 138 (1999), 93-96. [68] L.W. Shapiro, Some open questions about random walks , involutions, limiting distributions, and generating functions, Advances in Applied Math. 27 (2001), 585-596. [69] Y.-Z. Shih and E.-T. Tan, On Jm-Hadamard matrices, Expositiones Mathematicae 23 (2005), 81-88. [70] Y.-Z. Shih and E.-T. Tan, On Marrero`s Jm-Hadamard matrices, to appear in Taiwanese J. Math.. [71] Y.-Z. Shih and E.-T. Tan, On Craigen-de Launey`s constructions of Hadamard matrices, preprint. [72] N.J. Sloane, A Library of Hadamard Matrices, \\\\http://www.research.att.com/~njas/hadamard/. [73] R.P. Stanley, Enumerative Combinatorics Volume 1, Cambridge University Press, 1986. [74] R.P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999. [75] D. Stanton and D. White, Constructive Combinatorics, Springer-Veerlag New York Inc. 1986. [76] R. Stanton and C. Zarnke, Labelling of balanced trees, Proc. 4th Southeast Conference of Comb., Graph Theory, Computing (1973), 479-495. [77] J.J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colors, with applications to Newton`s Rule, ornamental tile-work, and the theory of numbers, Phil. Mag. 34 (1867), 461-475. [78] . Takacs, Counting forests, Discrete Math. 84 (1990), 323-326. [79] J. Touchard, Sur certaines equations fonctionnelles, Proc. Int. Math. Congress, Toronto (1924), Vol. 1, p.465, (1928). [80] F. van Bussel, Relaxed graceful labellings of trees, Electronic J. Combinatorics 9 (2002), #R4. [81] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992. [82] J.-G. Wang, D.J. Jin, X.-G. Lu and D. Zhang, The gracefulness of a class of lobster trees, Mathematical Computer Modelling 20 (1994), 105-110. [83] W. Woan, Uniform partitions of lattice paths and Chung-Feller generalizations, Amer. Math. Monthly 108 (2001), 556-559. [84] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc. 1996. [85] W.-C. Wu, Graceful labellings of 4-caterpillars, Master Thesis, Department of Mathematical Sciences, National Chengchi University, 2006. [86] S.L. Zhao, All trees of diameter four are graceful, Annals New York Academy of Sciences (1986), 700-706. |