Reference: | [1] T. G. Chen, On Henkin`s solution of the ***-problem on strictly convex domains in C^n, Universtity of California at Berkeley Ph. D. Thesis, 1985. [2] T. G. Chen, Geometry of strictly convex domains and an application to the uniform estimate of the ***-problem, Trans. Amer. Math. Soc. 347, (1995), 2127-2137. [3] T. G. Chen and L. J. Lin, Integral representation of solution for ***u=f and its uniform estimate on ellipsoids, Soochow Journal of Mathematics 21, (1995), 313-334. [4] H. Grauert and I. Lieb, Das Ramirezsche Integral und die Losung der Gleichung im Bereich der beschrankten Formen, Rice Univ. Studies 56(1970) no. 2, 29-50. [5] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and applications to the ***-problem, Mat. Sb. 82(124), 300-308 (1979); Math. U.S.S.R. Sb. 11(1970), 273-281. [6] G. M. Henkin and J. Leuterer, Theory of functions on complex manifolds, Birkfauser, Boston, Mass., 1984. [7] L. Hormander, L^2 estimates and existence theorems for the *** operator, Acta Math., 113(1965), 82-152. [8] L. Hormander, Introduction to complex analysis in several variables, North Holland, Amsterdam, 1973. [9] N. Kerzman, Holder and L^p estimates for solution of ***u=f on strongly pseudoconvex domains, Comm. Pure. Appl. Math., XXIV(1971), 301-380. [10]S. G. Krantz, Function theory of several complex variables, 2nd ed. Wadsworth and Brooks, pacific Grove, CA. [11]S. Long, Comples analysis, Reading, Mass., Addison-Wesley Pub. Co., 1977. [12]E. Ramirez, Divisions problem in der komplexen analysis mit einer Anwendung auf Rand integral darstellung, Math. Ann., 184(1970), 172-187. [13]R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer- Verlag New York Inc., 1986. [14]H. Shi, Uniform estimates for the ***-equation on balls, Proc. of the 1980 Beijing Symp. on differential geometry and differential equations, Science Press, Beihing, China, 1982, Gordon and Breach, Science Publisher, Inc., New York, vol. 3, 1431-1439. |