Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/32506
|
Title: | 視覺意識中的線性與非線性功能連結 Linear and Nonlinear Functional Connectivity |
Authors: | 李宏偉 Lee,Hung-Wei |
Contributors: | 黃淑麗 李宏偉 Lee,Hung-Wei |
Keywords: | 視覺意識 同步化 功能性連結 非線性 小波轉換 小世界 visual awareness synchrony functional connectivity nonlinearity wavelet-transform small-world |
Date: | 2006 |
Issue Date: | 2009-09-17 13:17:15 (UTC+8) |
Abstract: | 意識的議題古老而難解,但是近年來認知神經科學領域對此議題的探討已經熱烈展開,本研究之主要目的即在探索視覺意識與大腦功能性連結之間的關係。 根據一項人臉知覺的實驗結果,本研究依照線性對非線性、局部對整體等兩項條件所構成的四個取向,分別擬定用以反映視覺意識的腦電波指標。結果發現,線性的局部指標—即γ波的強度,以及線性的整體指標—即γ波的相位耦合程度,兩者皆無法有效反映視覺意識。然而,非線性的局部指標—即吸子的相關維度,在特定通道上可以反映視覺意識;至於非線性的整體指標—即廣義的同步化程度,乃為四者中最能穩定反映視覺意識的指標。 除了得到上述若干可以有效反映視覺意識的腦電波指標之外,本研究實質上整合了認知神經科學、非線性動力系統理論、小波轉換理論以及小世界理論等當代思維,因此文中亦做出大量而深入的理論探討,並且提出對現有相關研究在邏輯或方法上的改進與澄清。 Consciousness is an ancient and puzzling mystery. Until recently, scientists have made little significant progress on it. This study is aimed to search for the neural correlates of visual awareness.<br>Based on empirical data from an experiment of face perception, this study explores linear vs. nonlinear and local vs. global human EEG indexes of visual awareness. The results indicate that neither linear local index, i.e. γ-band power, nor linear global index, i.e. γ-band phase coherence, can reveal the participant’s state of awareness validly. However, nonlinear local index, i.e. correlation dimension of attractor, can be a valid index of visual awareness, but only on specific channels. Last but not least, nonlinear global index, i.e. generalized synchrony, can be the most valid and efficient index of visual awareness.<br>In addition to the empirical findings listed above, this study, an interdisciplinary combination of cognitive neuroscience, chaos theory, wavelet transform and small-world theory, also presents numerous theoretical discussions and modifications to other related studies logically or methodologically. |
Reference: | 李宏偉(民96 a)。非線性動力系統理論與心理學(一):概念與邏輯。玄奘社會科學學報,出版中。 李宏偉(民96 b)。非線性動力系統理論與心理學(二):分析與驗證。玄奘社會科學學報,出版中。 Arnhold, J., Grassberger, P., Lehnertz, L., & Elger, C. E. (1999). A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D, 134, 419-430. Baars, B. J. (1997). In the theater of consciousness: The workspace of the mind. New York: Oxford University Press. Başar-Eroglu, C., Strüber, D., Kruse, P., Başar, E., & Stadler, M. (1996). Frontal gamma-band enhancement during multistable visual perception. International Journal of Psychophysiology, 24, 123-125. Brown, R., & Kocarev, L. (2000). A unifying definition of synchronization for dynamical systems. Chaos, 10, 344-349. Breakspear, M., Brammer, M., & Robinson, P. A. (2003). Construction of multivariate sets from nonlinear data using the wavelet transform. Physica D, 182, 1-22. Buchanan, M. (2002). Nexus: Small worlds and the groundbreaking science of networks. New York, NY: Norton & Company. Cellucci, C. J., Albano, A. M., & Rapp, P. E. (2005). Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Physical Review E, 71, 066208. Chalmers, D. J. (1995). The conscious mind: In search of a fundamental theory. New York: Oxford University Press. Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393-404. Crick, F. (1994). The astonishing hypothesis : The scientific search for the soul. New York: Charles Scribner`s Sons. Crick, F., & Koch, C. (1990). Toward a neurobiology theory of consciousness. Seminars in the Neurosciences, 2, 263-275. Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97-107. Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119-126. Damasio, A. R. (1999). The feeling of what happens : Body and emotion in the making of consciousness. New York: Harcourt Brace. Delorme, A., & Makeig, S. (2004). EEGLAB: an open toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21. Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. Journal of Neuroscience, 19, 4595-4608. Edelman, G. M. (2004). Wider then the sky: The phenomenal gift of consciousness. New Heaven, London: Yale University Press. Edelman, G. M., & Tononi, G. (2000). A universe of consciousness: How matter becomes imagination. New York: Basic Books. Engel, A. K., Fries, P., König, P., Brecht, M., & Singer, W. (1999). Temporal binding, binocular rivalry, and consciousness. Consciousness and Cognition, 8, 128-151. Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Neurosciences, 5, 16-25. Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33, 1134-1140. Gleick, J. (1987). Chaos: Making a new science. New York, NY: Penguin. Goodale, M. A., & Milner, A. D. (2004). Sight unseen : An exploration of conscious and unconscious vision. New York: Oxford University Press. Graps, A. (1995). An introduction to wavelets. IEEE, Computational Sciences and Engineering, 2, 50-61. Grassberger, P., & Procaccia, I. (1983a). Characterization of strange attractors. Physical Review Letters, 50, 342-349. Grassberger, P., & Procaccia, I. (1983b). Measuring the strangeness of strange attractors. Physica D, 56, 189-208. Gray, C. M. (1999). The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron, 24, 31-47. Haken, H. (2004). Synergetics: Introduction and advanced topics. Berlin: Springer-Verlag. Hebb, D. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley. Hegger, R., & Kantz, H. (1999). Improved false neighbor method to detect determinism in time series data. Physical Review E, 60, 4970-4973. Holland, J. H. (1998). Emergence : From chaos to order. Cambridge, MA : Perseus Books. Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. New York, NY: Cambridge. Kennel, M. B., Brown, R., & Abarbanel, H. D. I. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45, 3403-3411. Koch, C. (2004). The quest for consciousness : A neurobiological approach. Denver, CO: Roberts and Co. Lachaux, J.-P., Rodriguez, E., Martinerie, J., Adam, C., Hasboun, D., & Varela, F. (2000). A quantitative study of gamma-band activity in human intracranial recordings triggered by visual stimuli. The European Journal of Neuroscience, 12, 2124-2134. Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194-288. Lee, L., Harrison, L. M., & Mechelli, A. (2003). A report of the fincitonal connectiveity workshop, Dusselforf 2002. NeuroImage, 19, 457-465. Liebovitch, L. S., & Shehadeh, L. A. (2005). Introduction to fractals. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 178-266). Retrieved January, 12, 2006, from http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141. Mandelbrot, B. (1967). How long is the coast of Britain? statistical self- similarity and fractional dimension. Science, 156, 636-638. Metzinger, T. (Ed.). (2000). Neural Correlates of Consciousness. Cambridge, MA: MIT Press. Mørup, M., Kai Hansen, L., & Arnfred, S. (2006). ERPWAVELAB: a toolbox of multi-channel analysis of time-frequency transformed event related potentials. Journal of Neuroscience Methods. doi:10.1016/j.jneumeth. 2006.11.008. Nunez, P. L. (2006). Electric fields of the brain: the neurophysics of EEG. (2nd ed.). Oxford: Oxford University. Penrose, R. (1994). Shadows of the mind : A search for the missing science of consciousness. New York: Oxford University Press. Percha, B., Dzakpasu, R., Zochowski, M., & Parent, J. (2005). Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Physical Review E, 72, 031909. Pikovsky, A., Rosenblum, M., & Kurth, J. (2001). Synchronization: a uiversal concept in nonlinear science. Cambridge, UK: Cambridge University Press. Quian Quirog, R., Arnhold, J., & Grassberger, P. (2000). Learning driver-response relationships from synchronization patterns. Physical Review E, 61, 5142-5148. Quian Quirog, E., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Physical Review E, 65, 041930. Ramachandran, V. S. (1998). Phantoms in the brain: Human nature and the architecture of the mind. London : Fourth Estate. Rapp, P. E., Albano, A. M., Schmah, T. I., & Farwell, L. A. (1993). Filtered noise can mimic low-dimensional chaotic attractor. Physical Review E, 47, 2289-2297. Revonsuo, A., Wilenius-Emet, M., Kuuselma, J., & Lehto, M. (1997). The neural generation of a unified illusion in human vision. NeuroReport, 8, 3867-3870. Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B., & Varela F. J (1999). Perception`s shadow: Long-distance synchronization of human brain activity. Nature, 397, 430-433. Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical Review Letters, 77, 635-638. Singer W., & Gray C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555-586. Sporns, O. (2006). Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems, 85, 55-64. Sporns, O., Tononi, G., & Edelman, G. M. (2000). Connectivity and complexity: The relationship between neuroanatomy and brain dynamics. Neural Networks, 13, 909-922. Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinfomatics, 2, 145-162. Stam, C. J. (2004). Functional connectivity patterns of human magneto- encephalographic recordings: A ‘small world’ network? Neuroscience Letters, 355, 25-28. Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical Neurophysiology, 116, 2266-2301. Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, Ph. (2006). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex. doi:10.1093/cercor/bhj127 Stam, C. J., Pijn, J. P. M., & Pritchard, W. S. (1998). Reliable detection of non-linearity in experimental time series with strong periodic components. Physica D, 112, 361-380. Stam, C. J., & van Dijk, B. W. (2002). Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets. Physica D, 163, 236-251. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268-276. Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics, Vol. 898. Dynamical systems and turbulence, pp. 366-381. Berlin: Springer. Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition. Journal of Physiology - Paris, 97, 355-363. Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, L. (1996). Stimulus specificity of phase-locked and non-phase locked 40 Hz visual response in human. Journal of Neuroscience, 16, 4240-4249. Theiler, J. (1986). Spurious dimension from correlation algorithms applied to limited time-series data. Physical Review A, 34, 2427-2432. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. D. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D, 58, 77-94. Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity. Science, 282, 1846-1851. Trujillo, L. T., Peterson, M. A., Kaszniak, A. W., & Allen, J. J.B. (2005). EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods. Clinical Neurophysiology, 116, 172-189. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. Mansfield (Eds.), Analysis of visual behavior (pp. 549 - 586). Cambridge, MA: MIT Press. Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229-239. Waldrop, M. M. (1992). Complexity: The emerging science at the edge of order and chaos. New York, NY: Simon & Schuster. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small world’ networks. Nature, 393, 440-442. Zeki, S. (1998). Parallel processing, asynchronous perception and a distributed system of consciousness in vision. Neuroscientists, 4, 365-372. |
Description: | 博士 國立政治大學 心理學研究所 89752503 95 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0897525031 |
Data Type: | thesis |
Appears in Collections: | [心理學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|