政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32233
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51104208      在线人数 : 907
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/32233


    题名: Multifractal Analysis for the Stock Index Futures Returns with Wavelet Transform Modulus Maxima
    股價指數期貨報酬率的多重碎形分析與小波轉換的模數最大值
    作者: 洪榕壕
    Hung,Jung-Hao
    贡献者: 謝淑貞
    Shieh,Shwu-Jane
    洪榕壕
    Hung,Jung-Hao
    关键词: 分數布朗運動
    自我相似
    維度
    多重碎形
    小波轉換模數最大植
    Fractional Brownian Motion
    Multifractal
    Hausdorff dimemsion
    Local Hölder exponent
    Wavelet transform modulus maxima
    日期: 2005
    上传时间: 2009-09-14 13:28:08 (UTC+8)
    摘要:   本文應用資產報酬率的多重碎形模型,該模型為一整合財務時間序列上的厚尾及波動持續性的連續時間過程。多重碎形的方法允許我們估計隨時間變動的報酬率高階動差,進而推論財務時間序列的產生機制。我們利用小波轉換的模數最大值計算多重碎形譜,透過譜分解得到資產報率分配的高階動差資訊。根據實證結果,我們得到S&P和DJIA的股價指數期貨報酬率符合動差尺度行為且資料也展現幕律的形態。根據估計出的譜形態為對數常態分配。實證結果也顯示S&P和DJIA的股價指數期貨報酬率均具有長記憶及多重碎形的特性。
      We apply the multifractal model of asset returns (MMAR), a class of continuous-time processes that incorporate the thick tails and volatility persistence of financial time series. The multifractal approach allows for higher moments of returns that may vary with the time horizon and leads to infer about the generating mechanism of the financial time series. The multifractal spectrum is calculated by the Wavelet Transform Modulus Maxima (WTMM) provides information on the higher moments of the distribution of asset returns and the multiplicative cascade of volatilities. We obtain the evidences of multifractality in the moment-scaling behavior of S&P and DJIA stock index futures returns and the moments of the data represent a power law. According to the shape of the estimated spectrum we infer a log normal distribution.The empirical evidences show that both of them have long memory and multifractal property.
    參考文獻: Arneodo, A., Grasseau, G., and Holschneider, M., “Wavelet Transform of Multifractals,” Physical Review Letters, v61, # 20, November (1988), 2281-2284.
    Arneodo, A., Barry, E., J. Delour., Muzy, J. F., The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232-275 (1995).
    Arneodo, A., Bacry, E., Muzy, J. F.,“Random cascades on wavelet dyadic trees,”Journal of Mathematical Physics, v39, # 8, August (1998), 4142-4164.
    Audit, B., Barry, E., Muzy, J. F., Arneodo, A., (2002), Wavelet based estimator of scaling behavior, IEEE. in Information Theory 48, 11, pp 2938-2954.
    Barry, E., J. Delour., Muzy, J. F., Modelling financial time series using multifractal random walks., Physica A, 299, 84-92 (2001).
    Baillie, R. T., “Long Memory Processes and Fractional Integration in Econometrics,” Journal of Econometrics 73:1 (1996), 5–59.
    Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen, “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 74:1 (1996), 3–30.
    Baillie, R. T., C. F. Chung, and M. A. Tieslau, “Analyzing Inflation by the Fractionally Integrated ARFIMA-GARCH Model,” Journal of Applied Econometrics 11:1 (1996), 23–40.
    Billingsley, P., Probability and Measure, (New York: John Wiley and Sons, 1995).
    Billingsley, P., Convergence of Probability Measures, (New York: John Wiley and Sons, 1999).
    Bollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 31:3 (1986), 307–327.
    Breidt, F.J., Crato, N. and P. de Lima, 1998, The detection and estimation of long
    memory in stochastic volatility, Journal of Econometrics, 83, pp.325-348.
    Calvet, L., A. Fisher, and B. B. Mandelbrot, “Large Deviation Theory and the Distribution of Price Changes,” Cowles Foundation discussion paper no. 1165, Yale University, available from the SSRN database at http://www.ssrn.com (1997).
    Calvet, L., and A. Fisher, “Forecasting Multifractal Volatility,” Journal of Econometrics 105:1 (2001), 27–58.
    Calvet, L., and A. Fisher, “Multifractality in Asset Returns: Theory and Evidence,” Review of Economics and Statistics 84 (2002), 381--406.
    Calvet, L., and A. Fisher,“How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,” Journal of Financial Econometrics, 2 (2004), 49--83
    Campbell, J., A. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets (Princeton: Princeton University Press, 1997).
    Engle, R. F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom In ation,” Econometrica 50:4 (1982), 987–1007.
    Engle, R.F. and T. Bollerslev, 1986, Modeling the persistence of conditional
    variance, Econometric Reviews, 5, pp.1-50.
    Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, (New
    York: John Wiley and Sons, 1990)
    Fisher, A., L. Calvet, and B. B. Mandelbrot, “Multifractality of Deutsche Mark/US Dollar Exchange Rates,” Cowles Foundation discussion paper no. 1166, Yale University, available from the SSRN database at http://www.ssrn.com (1997).
    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation101(23):e215-e220[CirculationElectronicPages;http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13).
    Lo, A. W., “Long Memory in Stock Market Prices,” Econometrica 59:5 (1991), 1279–1313.
    Mandelbrot, B. B., A. Fisher, and L. Calvet, “The Multifractal Model of Asset Returns,” Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://www.ssrn.com (1997).
    Mandelbrot, B. B., and J. W. van Ness, “Fractional Brownian Motion, Fractional Noises and Application, ” SIAM Review 10:4 (1968), 422–437.
    Mandelbrot, B.B, Fractals and Scaling in Finance: Discontinuity, Concetration, Risk. Springer, New York (1997).
    Muzy, J. F., Bacry, E. and A. Arneodo, Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data, Physical Review Letters, v. 67, # 25, December (1991), pp. 3515-3518.
    Muzy, J.F., Bacry ,E. and A. Arneodo,Multifractal formalism for fractal signals. The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E 47, 875 (1993).
    X. S., Huiping C., Ziqin W., Yongzhuang Yuan, Multifractal analysis of Hang Seng index inHong Kong stockmark et, Phys. A 291 (2001) 553–562.
    X. S., Huiping C.,Yongzhuang Y., Ziqin W., Predictability of multifractal analysis of Hang Seng stockindex in Hong Kong, Phys. A 301 (2001) 473–482.
    Yu W., Dengshi H., Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index, Phys. A 355 (2005) 497-508.
    描述: 碩士
    國立政治大學
    經濟研究所
    93258041
    94
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0093258041
    数据类型: thesis
    显示于类别:[經濟學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML2511检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈