Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/32210
|
Title: | 評估不同模型在樣本外的預測能力 利用支向機來做預測的結合 |
Authors: | 蔡欣民 Tsai Shin-Ming |
Contributors: | 陳樹衡 Chen Shu-Heng 蔡欣民 Tsai Shin-Ming |
Keywords: | 預測結合 樣本外的預測 預測誤差的範圍 支向機 時間序列模型 Combined Forecast Out-of-sample Forecast Range of Forecast Error Support Vector Machine Time Series Models |
Date: | 2003 |
Issue Date: | 2009-09-14 13:25:05 (UTC+8) |
Abstract: | 明天股票的價格是會漲還是會跌呢?
明天到底會不會下雨?
下期樂透開獎會是哪些號碼呢?
未來不知道會發生哪些事情?
大家總是希望能夠未卜先知、洞悉未來!
可是我們要如何進行預測呢?
本文比較了不同時間序列模型的預測績效,
而且測試預測的結合是否能夠改進預測的準確度?
時間序列模型的研究在近年來非常蓬勃地發展,
所以本文簡單介紹了時間序列模型(Time series models)當中的線性AR模型、非線性TAR模型、非線性STAR模型,
以及這些模型該如何來進行在樣本外的預測。
同時本文說明了預測的結合(Combined forecast)該如何進行?
預測結合的目的是希望能夠達到截長補短的效果!
除了傳統迴歸(Regression-based)方法和變動係數(Time-varying coefficients)方法外,
本文提出了兩種非迴歸類型的預測結合方法,
績效權數(Fitness weight)和支向機(Support Vector Machine)。
其中主要的焦點放在支向機,
因為迴歸方法可能會有共線性的問題,
支向機則是沒有這個問題。
本文實證的結果顯示,
在時間序列模型方面,
非線性模型的預測能力, 在大多數的情形底下, 都不如簡單的線性AR模型;
在預測結合的方面,
支向機的績效是和迴歸方法的績效是差不多的, 這兩者都比變動係數方法的績效來得穩固,
可是如果基底模型的預測值存在共線性的問題或樣本數目過少的問題,
那麼支向機的績效是優於迴歸方法的績效。
最後, 時間序列模型的預測績效會受到資料性質的影響, 而有極大的改變,
或許我們可以考慮使用比較保險的預測策略-預測結合,
因為預測結合的預測誤差範圍是小於時間序列模型的預測誤差範圍! |
Reference: | Bates, J. M. and C. W. J. Granger, 1969, The Combination of Forecasts, Operational Research Quarterly, 20, 451-468. Bingham, N. H. and R. Kiesel, 1998, Risk-neutral Valuation, New York: Springer. Box, G. E. P. and G. Jenkins, 1976, Time Series Analysis: Forecasting and Control, San Francisco: Holden Day. Brooks, C. and G. Persand, 2003, Volatility Forecasting for Risk Management, Journal of Forecasting, 22, 1-22. Chan, K. S. and H. Tong, 1986, On Estimating Thresholds in Autoregressive Models, Journal of Time Series Analysis, 7, 179-190. Chang, C.-C. and C.-J. Lin, 2003, LIBSVM: A Library for Support Vector Machines, Software available at http://www.csie.ntu.edu.tw/$\\sim$cjlin/libsvm. Clemen, R. T., 1989, Combining Forecasts: A Review and Annotated Bibliography, International Journal of Forecasting, 5, 559-583. Clements, M. P., P. H. Franses, J. Smith, and D. van Dijk, 2003, On SETAR Nonlinearity and Forecasting, Journal of Forecasting, 22, 359-375. Clements, M. P. and D. F. Hendry, 1998, Forecasting Economic Time Series, Cambridge, NY: Cambridge University Press. Clements, M. P. and J. Smith, 1999, A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models, Journal of Applied Econometrics, 14, 123-141. De Gooijer, J. G. and K. Kumar, 1992, Some Recent Developments in Non-linear Time Series Modelling, Testing, and Forecasting, International Journal of Forecasting, 8, 135-156. Diebold, F. X. and R. S. Mariano, 1995, Comparing Predictive Accuracy, Journal of Business and Economic Statistics, 13, 253-263. Filardo, A., 1994, Business Cycle Phases and Their Transitional Dynamics, Journal of Business and Economic Statistics, 12, 299-308. Franses, P. H. and D. van Dijk, 2000, Nonlinear Time Series Models in Empirical Finance, Cambridge, NY: Cambridge University Press. Granger, C. W. J., 1989, Combining Forecasts: Twenty Years Later, Journal of Forecasting, 8, 167-173. Granger, C. W. J. and R. Ramanathan, 1984, Improved Methods of Combining Forecasts, Journal of Forecasting, 3, 197-204. Granger, C. W. J. and T. Ter"{asvirta, 1993, Modelling Nonlinear Economic Relationships, Oxford, NJ: Oxford University Press. Hamilton, J. D., 1989, A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle, Econometrica, 57, 357-384. Hamilton, J. D., 1994, Time Series Analysis, Princeton, NJ: Princeton University Press. Hansen, B., 1999, Testing for Linearity, Journal of Economic Surveys, 13, 551-576. Kuan, C.-M., 2003, Lecture on Basic Time Series Models, Documents available at http://www.sinica.edu.tw/as/ssrc/ckuan. Luukkonen, R., P. Saikkonen, and T. Ter"{asvirta, 1988, Testing Linearity Against Smppth Transition Autoregressive Models, Biometrika, 75, 491-499. Mittnick, S., 1991, Nonlinear Time Series Analysis with Generalized Autoregressions: A State Space Approach, Working Paper, Department of Economics, State University of New York. Potter, S. M., 1995, A Nonlinear Approach to US GNP, Journal of Applied Econometrics, 10, 109-125. Potter, S. M., 1999, Nonlinear Time Series Modelling: An Introduction, Journal of Economic Survey, 13, 505-528. Priestley, M. B., 1980, State-dependent Models: A General Approach to Nonlinear Time Series Analysis, International Journal of Forecasting, 1, 47-71. Saikkonen, P. and R. Luukkonen, 1988, Lagrange Multiplier Tests for Testing Nonlinearities in Time Series Models, Scandinavian Journal of Statistics, 15, 55-68. Sch"{olkopf, B. and A. J. Smola, 2002, Learning with Kernels, Cambridge, Massachusetts: MIT Press. Sch"{olkopf, B., A. J. Smola, R. C. William, and P. L. Bartlett, 2000, NewSupport Vector Algorithms, Neural Compuation, 12, 1207-2765. Sin, C.-Y. and H. White, 1995, Information Criteria for Selecting Possibly Misspecidied Parametric Models, Journal of Econometrics, 71, 207-225. Swanson, N. R. and T. Zeng, 2001, Choosing among Competing Econometric Forecasts: Regression-based Forecast Combination Using Model Selection, Journal of Forecasting, 20, 425-440. Tay, A. S. and K. F. Wallis, 2000, Density Forecasting: A Survey, Journal of Forecasting, 19, 235-254. Ter"{asvirta, T., 1994, Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models, Journal of the American Statistical Association, 89, 208-218. Ter"{asvirta, T. and H. M. Anderson, 1992, Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models, Journal of Applied Econometrics, 7, 119-136. Ter"{asvirta, T., D. Tj\\o stheim, and C. W. J. Granger, 1994, Aspects of Modelling Nonlinear Time Series, in R. F. Engel and D. L. McFadden, (eds.), Handbook of Econometrics, 4, 2919-2957, Amsterdam, NY: North Holland Pub. Terui, N. and H. K. van Dijk, 2002, Combined Forecasts from Linear and Nonlinear Time Series Models, International Journal of Forecasting, 18, 421-438. Timmermann, A., 2000, Density Forecasting in Economics and Finance, Journal of Forecasting, 19, 231-234. Tj\\o stheim, D., 1986, Some Doubly Stochastic Time Series Models, Journal of Time Series Analysis, 7, 51-72. Tong, H., 1983, Threshold Models in Non-Linear Time Series Analysis, New York: Springer. Tong, H., 1990, Non-Linear Time Series: A Dynamical System Approach, Oxford, UK: Oxford University Press. Tong, H. and K. S. Lim, 1980, Threshold Autoregression, Limit Cycles and Cyclical Data, Journal of the American Statistical Association, June, 638-643. Tsay, R.-S., 1989, Testing and Modelling Threshold Autoregressive Processes, Journal of the American Statistical Association, 84, 231-240. Tsay, R.-S., 2000, Time Series and Forecasting: Brief History and Future Search, Journal of the American Statistical Association, June, 638-643. Vapnik, V. N., 1995, The Nature of Statistical Learning Theory, New York: Springer. Vapnik, V. N. and A. Y. Chervonenkis, 1964, A note on one class of perceptrons, Automation and Remote Control, 25. |
Description: | 碩士 國立政治大學 經濟研究所 90258017 92 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0090258017 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 324 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|