Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/31283
|
Title: | 同調風險測量值在保證給付投資型保險準備金提存之應用 |
Authors: | 鄭宇宏 |
Contributors: | 楊曉文 黃泓智
鄭宇宏 |
Keywords: | 同調風險測量值 變形函數 條件尾端期望值 尾端涉險值 保證年金選擇權 |
Date: | 2002 |
Issue Date: | 2009-09-14 09:42:11 (UTC+8) |
Abstract: | Artzner等學者在1999年提出風險測量值應具備同調(coherent)性質,然而,涉險值並未能完全符合。本文針對Wirch & Hardy(1999)提出滿足Artzner et al.(1999)所定義同調性質之風險量化指標如條件尾端期望值(Conditional Tail Expectation;又稱尾端涉險值,Tail-VaR)以及危險比例(proportional hazards;PH)、雙重次方(dual power;DP)變形函數(distortion function)等風險衡量方法作探討,參考MGWP(1980)、Boyle & Hardy(1997)、Hardy(2000)、Yang(2001)、Wilkie & Waters & Yang(2003)對於附保證給付之投資連結型保險契約提存準備金的方法,將其應用到保險公司所發行的附保證給付之風險量化上,同時比較其與涉險值之差異。其中之數值分析將以附最低死亡保證給付(Guarantee Minimum Death Benefit)之變額年金,以及附保證年金選擇權(Guaranteed Annuity Options)之單位連結(Unit-linked)保險商品作為範例,分別以台灣、英國兩地的投資環境為背景,檢視其附保證給付之投資型保單可能面臨的風險暴露,提供保險公司作為提存投資型商品保證給付部分之責任準備金參考。 In this paper we introduce the properties of a coherent risk measure(Artzner et al(1999)). The risk measure of Value at Risk that does not adhere to the consistency requirements is discussed. We consider the coherent risk measures of conditional tail expectation(also known as Tail-VaR), proportional hazards and dual power distortion functions outlined by Wirch and Hardy(1999). MGWP(1980),Boyle and Hardy(1997),Hardy(2000),Yang(2001),Wilkie, Waters and Yang(2003)use VaR and the latter two papers also apply conditional tail expectation to reserve for investment-linked contracts with guaranteed risk. Instead, we apply the coherent measures to reserve two different types of guarantee:guarantee minimum death benefit and guaranteed annuity options attached to variable annuity contracts and unit-linked contracts separately. In addition, the comparison of the numerical results for VaR risk measure and coherent risk measure are analyzed. |
Reference: | 一、中文部分 1.王棻瑩(2002),「附保證給付之投資型保險商品成本訂價:以變額年金保險死亡保證為例」,淡江大學保險經營研究所碩士論文 2.吳明政(1997),「變額年金精算及相關問題之探討」,逢甲大學保險學研究所碩士論文 3.李進生、謝文良、林允永、蔣炤坪、陳達新、盧陽正(2001),風險管理:風險值(VaR)理論與應用,清蔚科技出版 4.周大慶、沈大白、張大成、敬永康、柯瓊鳳(2002),風險管理新標竿:風險值理論與應用,智勝文化出版 5.林至岳(2002),「台灣投資型保險市場與發展」,保險發展事業中心研究報告 6.林姿婷(2001),「風險基礎資本與涉險值運用在保險監理上之比較」,政治大學風險管理與保險學研究所碩士論文 7.陳家明譯(2000),變額保險,財團法人保險事業發展中心發行 8.郭怡馨(1999),「保本型變額壽險之評價分析」,政治大學風險管理與保險學研究所碩士論文 9.張智星(2000),MATLAB程式設計與應用,清蔚科技出版 10.黃達業譯(2001),風險值:市場風險控管之新基準,台灣金融研訓院發行11.黃泓智、余清祥、楊曉文、黃彥富(2003),隨機投資模型之建立與長期負債之投資避險策略,投稿中論文 12.楊曉文&黃泓智(2003),「分紅保單和不分紅保單之研究」,執行中論文 13.楊曉文(2003),應用隨機模擬方法提存投資型保險之保證風險:以保證年金選擇權為例,投稿中論文 14.廖勇誠(1997),「變額年金保險與共同基金之比較分析」,逢甲大學保險學研究所碩士論文 二、英文部分 1.Artzner P., Delbaen F., Eber J.-M., Heath D.(1999),“Coherent Measures of Risk” Mathematical Finance 9(3):203-228 2.Artzner, P.(1999),“Application of Coherent Risk Measures to Capital Requirements in Insurance”, North American Actuarial Journal(2)2:11-25 3.Boyle, P. P. & Hardy M. R.(1997), “Reserving for Maturity Guarantees:Two Approaches”, Insurance: Mathematics and Economics, 21:113-127 4.CIA Task Force(2002), “Report of the CIA Task Force on Segregated Fund Investment Guarantees” 5.Darrel Duffie, Jun Pan(1997), “An Overview of Value at Risk”, Journal of Derivatives, 4:7-48 6.Goovaerts, DeVylder, F., and Haezendonce, J.(1984), Insurance Premiums, The Netherlands:North Holland 7.Hardy, M.R.(2000), “Hedging and Reserving for Single-Premium for Segregated Fund Contracts”, North American Actuarial Journal(4)2 8.Hardy, M.R.(1999), “Maturity Guarantees for Segregated Fund Contracts:Hedging and Reserving”, Presented at symposium, Risks in Investment Accumulation Products, New York 9.Hogg, R.V., Klugman, S.A.(1984), Loss Distributions, New York:Wiley 10.Jorion, P.(2000),Value at Risk-The New Benchmark for Managing Financial Risk, Chicago:McGraw-Hill Companies 11.Maturity Guarantees Working Party(MGWP)(1980), “Report of the Maturity Guarantees Working Party” Journal of the Institute of Actuaries, 107:103-209 12.Meyers, G..G..(2002), “Setting Capital Requirements with Coherent Measures of Risk”, Actuarial Review 13.Szego,G.,(2002)“Measures of risk”, Journal of Banking & Finance, 26:1253-1272 14.Wang, S.S., Young Virginia R.(1998)“Ordering risks:Expected utility theory versus Yarri’s dual theory of risk”, Insurance: Mathematics and Economics, 22:145-161 15.Wang, S.S.(1998), “An actuarial index of the right-tail risk”, Insurance: North American Actuarial Journal, 2(2):88-101 16.Wang, S.S., Young, V.R., Panjer, H.H.,(1997), “Axiomatic characterization of insurance prices”, Insurance: Mathematics and Economics, 21(2):173-183 17.Wang, S.S.(1996a), “Ordering of risks under PH-transforms”, Insurance: Mathematics and Economics, 18:109-114 18.Wang, S.S.(1996b), “Premium calculation by transforming the layer premium density”, ASTIN Bulletin 26:71-92 19.Wang, S.S.(1996c), “Risk measures with applications in insurance ratemaking actuarial valuation”, Technical report, University of Waterloo;Course Notes. 20.Wang, S.S.(1995), “Insurance pricing and increased limits ratemaking by proportional hazards transforms”, Insurance: Mathematics and Economics, 17:43-54 21.Wirch, J.L.(1999), Coherent Beta Risk Measures for Capital Requirements. Ph.D. Thesis, Waterloo University, Ontario 22.Wirch, J.L.(1999), “Raising Value At Risk”, North American Actuarial Journal(3)2:106-115 23.Wirch, J.L. & Hardy, M.R.(2000a), “Distortion Risk Measures:Coherence and Stochastic Dominance”, Working paper 24.Wirch, J.L. & Hardy, M.R.(2000b), “Proper Ordering for Risk Measures”, AFIR Congress Proceedings 25.Wirch, J.L. & Hardy, M.R.(1999), “A synthesis of risk measures for capital adequacy”, Insurance: Mathematics and Economics, 25:337-347 26.Wendy L. Martinez & Angel R. Martinez(2002), Computational Statistics Handbook with MATLAB, London:Chapman and Hall 27.Wilkie, A. D., Waters, H.R., Yang, S (2003), “Reserving, pricing and hedging for policies with guaranteed annuity option“, Forthcoming in British Actuarial Journal 28.Wilkie, A. D.(1995), “More on A Stochastic Asset Model for Actuarial Use”, British Actuarial Journal 1:777-964 29.Wilkie, A. D.(1986), “A Stochastic Investment Model for Actuarial Use”, Transactions of the Faculty of Actuaries, 39, pp.341-381. 30.Wilkie, A. D.(1976), “Universal or Variable Linked Life Assurances and Life Annuities”, Journal of the Institute of Actuaries:.221-228 31.Yang, S(2001), Reserving, pricing and hedging for guaranteed annuity option. Ph.D. Thesis, Heriot-Watt University, Edinburgh 32.Yarri, M.E.(1987), “The Dual Theory of Choice Under Risk”, Econometrica(55)1:95-115 33.Actuarial Guideline XXXIV / Minimum Guaranteed Benefits for Variable Annuities, 1998 Valuation Actuary Symposium Proceedings, Session 10PD, http://www.soa.org:80/library/valact/1985-99/VASP989.pdf 34.Minimum Guaranteed Benefits on Variable Annuities, 2000 Valuation Actuary Symposium, Session 17PD, http://www.soa.org:80/library/valact/2000-09/va00_17pd.pdf 35.Understanding And Managing The Risks Underlying Guaranteed Benefits In Variable Annuities, New Orleans Annual Meeting(SOA), http://www.soa.org:80/library/record/2000-09/rsa01v27n3160ts.pdf 36.Minimum Guaranteed Benefits on Variable Annuities, 2001 Valuation Actuary Symposium, Session 10PD, http://www.soa.org:80/library/valact/2000-09/va01_10pd.pdf 37.Guarantees on Variable Products:How Are Companies Assessing the Risks, Atlanta Spring Meeting(SOA), http://www.soa.org:80/library/record/1990-99/rsa99v25n190pd.pdf 38.Understanding and Managing Annuity Risks, Colorado Springs Spring Meeting(SOA), http://www.soa.org:80/library/record/2000-09/rsa02v28n111PD.pdf 39.Variable Annuities and Segregated Funds—Guaranteed Benefits Valuation Issues, San Francisco Annual Meeting(SOA), http://www.soa.org:80/library/record/1990-99/rsa99v25n3127pd.pdf |
Description: | 碩士 國立政治大學 風險管理與保險研究所 90358017 91 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0903580171 |
Data Type: | thesis |
Appears in Collections: | [風險管理與保險學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 256 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|