Reference: | 國內文獻: 1. 王麗妙,「以跳躍-擴散模型評價單一型認購權證之實證研究」,國立高雄第一科技大學金融營運系研究所,碩士論文,民國88年。 2. 李國榮,「跳躍-擴散過程下之債券及債券選擇權訂價」,國立中山大學財務管理學系研究所,碩士論文,民國88年。 3. 林丙輝、葉仕國,「台灣金融市場跳躍-擴散利率模型之實證研究」,中國財務學刊,第六卷第一期,77-106頁,民國87年7月。 4. 林盈志,「固定收益證券之金融創新-結構型債券」,寶來金融創新雙月刊,第九期,民國88年11月。 5. 黃珮菁,「路徑相依利率結構型債券之評價」,國立政治大學金融研究所,碩士論文,民國93年。 6. 廖志展,「在跳躍擴散過程下評價利率期貨選擇權」,國立政治大學國際貿易系研究所,碩士論文,民國93年。 7. 謝嫚綺,「結構型債券之評價與分析」,國立政治大學金融研究所,碩士論文,民國93年。 國外文獻: 1. Amin, K., I., and Morton, A. J. (1994), “Implied volatility functions in arbitrage-free term structure models.”, Journal of Financial Economics, 35, pp.141-180. 2. Babbs, S., and Webber, N. (1997), “Term structure modeling under alternative official regimes.”, in Mathematics of derivative securities, M. A. H. Dempster and S. R. Pliska (Eds.), Cambridge University Press, Cambridge, UK. 3. Björk, T., Kabanov, Y., and Runggaldier, W. (1997), “Bond market structure in the presence of marked point processes.”, Mathematical Finance, 7(2), pp.211-223. 4. Brace, A., Gatarek, G., and Musiela, M. (1997), “The market model of interest rate dynamics.”, Mathematical Finance, 7(2), pp.127-147. 5. Brigo, D., and Mercurio, F. (2001), “Interest Rate Models Theory and Practice.”, Springer-Verlag, Heidelberg , Germany. 6. Chiarella, C., and Tô, T.-D. (2003), “The jump component of the volatility structure of interest rate futures markets : and international comparison.”, The Journal of Futures Markets, 23(12), pp.1125-1158. 7. Das, S. R. (1999), “The surprise element: jumps in interest rate diffusions.”, Working paper, Harvard Business School. 8. El-Jahel, L., Lindberg, H., and Perraudin, W. (1997), “Interest rate distributions, yield curve modeling and monetary policy.”, in Mathematics of derivative securities, M. A. H. Dempster and S. R. Pliska (Eds.), Cambridge University Press, Cambridge, UK. 9. Glasserman, P. (2003), “Monte Carlo Methods in Financial Engineering.”, B. Rozovskii and M. Yor (Eds.), Springer-Verlag, New York, USA. 10. Glasserman, P., and Kou, S. G. (2003), “The term structure of simple forward rates with jump risk.” , Mathematical Finance, 13(1), pp.383-410. 11. Heath, D., Jarrow, R., and Morton, A. (1992), “Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation.”, Econometrica, 60(1), pp.77-105. 12. Ho, T. S. Y., and Lee, S. B. (1986), “Term structure movements and pricing interest rate contingent claims.”, Journal of Finance, 41, pp.1011-1029. 13. Hull, J. C., and White, A. (1990), “Pricing interest-rate-derivative securities.”, Review of Financial Studies, 3(4), pp.573-592. 14. Hull, J. C. and White A. (2000), “Forward rate volatilities, swap rate volatilities, and implementation of the LIBOR market model.”, Journal of Fixed Income, 9, pp.46-62. 15. Johannes, M. (2004), “The statistical and economic role of jumps in continuous-time interest rate models.”, Journal of Finance, ,pp.227-260. 16. Miltersen, K. R., Sandmann, K., and Sondermann, D. (1997), “Closed form solutions for term structure derivatives with log-normal interest rates.”, Journal of Finance”, 52(1), pp.409-430. 17. Shirakawa, H. (1991), ”Interest rate option pricing with Poisson-Gaussian forward rate curve processes.”, Mathematical Finance, 1(4), pp.77-94. 18. Shreve, S. E. (2004), “Stochastic Calculus for Finance II: Continuous-Time Models.”, Springer-Verlag, USA. 19. Sundaresan, S. M. (2002), “Fixed Income Markets and Their Derivatives, 2e.”, South-Western, USA. 20. Zagst, R. (2002), “Interest-Rate Management.” , Springer-Verlag, Heidelberg, Germany. |