Reference: | 中文部份 [1] 曹若玹,「可贖回雪球式商品的評價與避險」,國立政治大學,碩士論文,民國95年。 [2] Philippe Jorion著,風險值,黃達業、張容容譯,台灣金融研訓院。 英文部分 [1] Brace, A., D. Gatarek and M. Musiela “The Market Model of Interest Rate” . Dynamics Mathematical Finance 7, p127-155,1997. [2] Brigo, D., “A Note on Correlation and Rank Reduction”,working paper,2002 [3] Brigo, D. and F. Mercurio. Interest Models, Theory and Practice , Springer-Verlag , 2001. [4] Glasserman, P., Monte Carlo Method in Financial Engineering, New York,Springer,2004. [5] Glasserman, P., and X., Zhao.“Fast Greeks by Simulation in Forward LIBOR Models”, Journal of Computational Finance ,3:5-39,1999 . [6] Glasserman, P., and Yu, B. “Number of Paths Versus Number of Basis Functions in American Option Pricing”,Annuals of Applied Probability 14(4),2004. [7] London, Justin. “Modeling derivatives in C++ / Justin London”, Hoboken, N.J. ,J. Wiley, c2005 [8] Longstaff, F. and Schwartz, E. “Valuing American Options by Simulation: A Simple Least-Squares Approach”, The Review of Financial Studies, Vol. 14, No.1, pp. 113-147,2001. [9] Musiela, Marek, Martingale methods in financial modelling, Berlin ; New York : Springer, c1997 [10] Piterbarg.V.V. “A Practioner’s Guide to Pricing and hedging Callable Libor Exotics in Forward Libor Models”,SSRN Working Paper,2003. [11] Piterbarg.V.V. “Computing Deltas of Callable Libor Exotics in Forward Libor Models”,Journal of Computational Finance 7(3),p107-144,2004 [12] Piterbarg.V.V. “Pricing and Hedging Callable Libor Exotics in Forward Libor Models”, Journal of Computational Finance 8(2),p65-117,2004. [13] Roberto,K. Structured products : a complete toolkit to face changing financial markets, John Wiley & Sons Ltd,2002. [14] Rebonato, R. Volatility and Correlation: In the Pricing of Equity, FX and Interest-Rate Options, John Wiley & Sons Ltd., West Sussex,1999. [15] Shreve, S. Stochastic Calculus for Finance II, Springer-Verlag, New York.,2004. [16] Svoboda, S. Interest Rate Modelling, Palgrave Macmillan, New York,2004. |