Reference: | 1. 中文部分 (1) 中華民國人壽保險商業同業公會(2003),台灣壽險業第四回經驗生命表,初版,台北市:中華民國人壽保險商業同業公會。 (2) 林鴻鈞(2003),「六大重點看保本商品:如何說明投資型保單是最佳選擇」,Advisers財務顧問,第175期,115-117。 (3) 張智星(2000),MATLAB程式設計與應用,初版,新竹市:清蔚科技。 (4) 張斐然(2003),投資型保單入門學習地圖,初版,台北市:早安財經文化。 (5) 陳松男(2002),金融工程學:金融商品創新選擇權理論,初版,台北市:華泰。 (6) 陳威光(2001),選擇權:理論、實務與應用,初版,台北市:智勝。 (7) 廖泗滄(1988),壽險數理,初版,台北市:台北市人壽保險商業同業公會。 (8) 鄭榮治(1999),壽險數理要義—精算師入門基石,第二版,台北市:華泰。譯自Life Insurance Primary Mathematics. 2. 英文部分 (1) Black, F. and M.J. Scholes (1973), “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy, 81, 637-659. (2) Black, F., E.Derman and W. Toy (1990), “A One-Factor Model of Interest Rates and Its Applications to Treasury Bond Options.” Financial Analysts Journal, Jan-Feb, 33-39. (3) Bolye, P. (1977), “A Monte Carlo Approach.” Journal of Financial Economics, 4, 323-338. (4) Brennan, M. J., and E.S. Schwartz (1976),”The Pricing of Equity-Linked Life Insurance Policies with an Asset Value Guarantee.” Journal of Financial Economics, 3, 195-213. (5) Carverhill, A. and L. Clewlow (1990), “Flexible Convolution.” Risk, 3, 25-29. (6) Cerny, A. (2003), Mathematical Techniques in Finance: Tools for Incomplete Markets, 1st ed., U.S.A., Princeton and Oxford. (7) Clewlow, L. and C. Strickland (1998), Implementing Derivatives Models, 1st ed., England, John Wiley & Sons Ltd. (8) Cox, J. C., J. E. Ingersoll, S. A. Ross (1985), “A Theory of the Term Structure of Interest Rates.” Econometrica, Vol. 53, No 2,385-408. (9) Gerber, H.U. and E.S. Shiu (1994), “Option Pricing by Esscher Transforms.” Transactions of the Society of Actuaries, 46, 99-140. (10) Hardy, M.R. (2000), “Hedging and Reserving for Single-Premium Segregated Fund Contracts.” North American Actuarial Journal, Vol. 4, No. 2, 63-74. (11) Health, D., R. Jarrow, and A. Morton (1992), “Bond Pricing and the Term structure of Interest Rates: A New Methodology for Contingent Claims Valuation.” Econometrica, Vol. 60, No 1, 77-105. (12) Ho, T., and S. Lee (1986),”Term Structure Movements and Pricing Interest Rates Contingent Claims.” Journal of Finance, 41, 1011-1029. (13) Hull, J., and A. White (1994), “Numerical Procedure for Implementing Term Structure Models Ⅱ: Two Factor Models.” The Journal of Derivatives, Vol. 2, 37-49. (14) Hull, J.C. (2000), Options, Futures& Other Derivatives, 4th ed., U.S.A. , Prentice-hall International. (15) Lee, H. (2003),” Pricing Equity-Indexed Annuities with Path-Dependent Options.” Insurances: Mathematics and Economics, 33, 677-690. (16) Mψller, T.(1998), “Hedging Equity-Linked Life Insurance Contracts.” North American Actuarial Journal, Vol. 5, No. 2, 79-95. (17) Neftci, S. N. (2000), An Introduction to the Mathematics of financial Derivatives, 2nd ed., U.S.A., Academic Press. (18) Nielsen, J.A., K. Sandmann(1995), ” Equity-Linked Life Insurance: a Model with Stochastic Interest Rates.” Insurances: Mathematics and Economics, 16, 225-253. (19) Nonnenmacher, D.J.F., J. Ruβ (1998), “Arithmetic Averaging Equity-Linked Life Insurance Policies in Germany.” Insurances: Mathematics and Economics, 25, 23-35. (20) Persson, S. A., K. K. Aase (1997), “Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products.” The Journal of Risk and Insurance, Vol.64, No. 4, 599-617. (21) Porter, M. E. (1985), Competitive Advantage: Creating and Sustaining Superior Performance, New York: Free Press; London: Collier Macmillan. (22) Tiong, S. (1998), “Valuing Equity-Linked Annuities.” North American Actuarial Journal, Vol. 4, No. 4, 149-170. (23) Turnbull, S. M. and L. M. Wakeman (1991), “Quick algorithm for Pricing European Average Options.” Journal of Financial and Quantitative Analysis, 77-389. (24) Vasciek, O. (1977), “An Equilibrium Characterization of the Term Structure.” Journal of Financial Economics, 5, 177-188. (25) Vorst, A. C. F. (1992),”Pricing and Hedge Ratios of Average Exchange Rate Options” International Review of Financial Analysis, 1,179-193. (26) Windcliff, H., P.A. Forsyth, K.R. Vetzal (2001), “Valuation of Segregated Funds: Shout Options with Maturity Extensions.” Insurances: Mathematics and Economics, 29, 1-21. (27) ZAgst, R. (2002), Interest-Rate Management, 1st ed., Germany, Springer. |