Reference: | 中文部份 1. 陳松男,金融工程學:金融商品創新選擇權理論,華泰書局,民國91年。 英文部份 1. Alziary B., J. Decamps, and P. Koehl(1997), “A P.D.E. Approach to Asian Options:Analytical and Numerical Evidence,” Journal of Banking and Finance, 21, pp613-640. 2. Bakshi, G. and D. B. Madan(2000), “Spanning and Derivative Security Valuation,” Journal of Financial Economics, pp205-238. 3. Benhamou, E.(2002), “Fast Fourier Transform for Discrete Asian Options,” Journal of Computational Finance, 6. 4. Boyle, P.(1997), “Options :A Monte Carlo Approach,” Journal of Financial Economics, 4, pp323-338. 5. Carr P., and D. B. Madan(1999), “Option Valuation Using the Fast Fourier Transform,” Journal of Computational Finance, 2, pp61-73. 6. Caverhill A. and Clewlow L(1992), Flexible Convolution, From Black Scholes to Black Holes, pp165-171. 7. Corwin J., P. Boyle, and K. Tan(1996), “Quasi-Monte Carlo Methods in Numerical Finance,” Management Science, 42, pp926-938. 8. Dempster M., and S. Hong(2000), “Pricing Spread Option with the Fast Fourier Transform,” University of Cambridge working paper. 9. Dewynne J., and P. Wilmott(1995), “Asian Options as Linear Complementary Problems,” Advances in Futures and Options Research, 8, pp145-173. 10. Hewitt E., and K. R. Stromberg(1965), Real and Abstract Analysis, Springer-Verlag, New York. 11. Hull J., and A. White(1993), “Efficient Procedures for Valuing European and American Path Dependent Options,” Journal of Derivatives , 1, pp21-23. 12. Kemna A., and A. Vorst(1990), “A Pricing Method for Option Based on Average Asset Values,” Journal of Banking and Finance, 14, pp113-129. 13. Levy, E.(1992), ”Pricing European Average Rate Currency Options,” Journal of International Money and Finance, 11, pp474-491. 14. Levy E., and S. Turnbull(1992), “Beyond Average Intelligence,” RISK, 5 , pp53-59. 15. Madan, D. B., P. Carr, and E. Chang(1998), “The Variance Gamma Process and Option Pricing,” European Finance Review, 2, pp79-105. 16. Milevsky M. A., and S. E. Posner(1998), “Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution,” Journal of Financial and Quantitative Analysis , 33, pp409-422. 17. Milevsky M. A., and S. E. Posner(1999), “Another Moment for the Average Option,” Derivatives Quarterly, pp47-53. 18. Neave E., and S. Turnbull(1993), “Quick Solutions for Arithmetic Average Options on a Recombining Random Walk,” 4th Actuarial Approach for Financial Risks International Colloquium, pp718-739. 19. Turnbull S., and L. Wakeman(1991), “A Quick Algorithm for Pricing European Average Options,” Journal of Financial and Quantitative Analysis, 26, pp377-389. 20. Vorst T.(1992), “Prices and Hedge Ratios of Average Exchange Rate Options,” International Review of Financial Analysis, 1, pp179-193. 21. Roussas G.(1997), A Course in Mathematical Statistics, Academic Press. 22. Shephard N. G.(1991), “From Characteristic Function To Distribution Function:A Simple Framework For The Theory,” Econometric Theory, 7, pp519-529. |