Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/31134
|
Title: | 應用模擬最佳化來求解產險公司之資產配置的兩篇論文 |
Authors: | 黃孝慈 |
Contributors: | 陳春龍 蔡政憲 黃孝慈 |
Keywords: | 模擬最佳化 財產保險 資產配置 simulation optimization property-casualty insurance asset allocation |
Date: | 2008 |
Issue Date: | 2009-09-14 09:19:12 (UTC+8) |
Abstract: | 當產險公司需要同時兼顧競爭力並免於破產時,適當的資產配置就是一項相當重要的決策。然而採用均數-變異數分析(mean‐variance analysis)將受到許多限制,而動態控制理論則是難以實作,因此,我們提出一個新的解決方法。這個方法主要係應用模擬最佳化的演算法,例如基礎的基因演算法(basic genetic algorithm, GA),多階層演化策略(multi-phase evolutionary strategies, MPES)及多階層基因演算法(multi-phase genetic algorithm, MPGA)等並結合模擬模型,來求解保險公司之資產配置的問題。首先我們建立投資市場及保險業務市場的模擬模型,之後再利用本研究所發展出新的最佳化演算法來搜尋最佳的資產配置。在實務上無法實現的多期投資策略,在我們的研究架構下得以被採用,並且在比較求解結果下,多期投資策略(reallocation strategies)較定額投資策略(re‐balancing strategies)有顯著較佳的績效。在兼顧保險公司投資收益並避免破產的目標函數下,我們所提出的研究方法已證明可以用來協助保險公司建立較佳的資產配置。 Proper asset allocations are vital for property‐casualty insurers to be competitive and remain solvent. However, popular mean‐variance analysis is limited while dynamic control theory is difficult to implement. We thus propose to apply simulation optimizations such as basic genetic algorithm (GA), multi‐phase evolutionary strategies (MPES) and multi‐phase genetic algorithm (MPGA) to the asset allocation problems of the insurers. We first construct a simulation model of the property‐casualty insurer and then develop simulation optimization techniques to search optimal investment strategies upon the simulation results.
The resulted reallocation strategies perform better than re‐balancing strategies used in practice with significant margins. Therefore, our proposal researches can be used to assist insurers to construct better asset allocations. |
Reference: | 1. Back, T.H., 1996. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York. 2. Björk, T., 1998. Arbitrage Theory in Continuous Time, Oxford University Press, New York, 52‐60. 3. Brennan, M. J., Schwartz, E. S., and Lagnado, R., 1997. Strategic asset allocation. Journal of Economic Dynamics and Control 21, 1377‐1403. 4. Campbell, J. Y., 2000. Asset pricing at the millennium. Journal of Finance 55, 1515‐1567. 5. Chiu, M. C. and Li, D., 2006. Asset and liability management under a continuous‐time mean–variance optimization framework. Insurance: Mathematics and Economics 39, 330‐355. 6. Cox, J. C. and Huang, C. F., 1989. Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory 49, 33‐83. 7. Cox, J. C., Ingersoll, J. E., and Ross, S. A., 1985. A theory of the term structure of interest rates. Econometrica 53, 385‐407. 8. Craft, T. M., 2005. Impact of pension plan liabilities on real estate investment. Journal of Portfolio Management, 23‐28. 9. Garai, G. and Chaudhuri, B.B., 2003. A hierarchical genetic algorithm with search space partitioning scheme. International Conference on Integration of Knowledge Intensive 65 Multi‐Agent Systems, 139‐144. 10. Markowitz, H. M., 1952. Portfolio selection. Journal of Finance 7, 77‐91. 11. Merton, R. C., 1971. Optimal consumption and portfolio rules in a continuous‐time model. Journal of Economic Theory 3, 373‐413. 12. Merton, R. C., 1990. Continuous Time Finance. Basil Blackwell, Cambridge, Chapters 4‐6. 13. Nissen, V. and Biethahn, J., 1995. An introduction to evolutionary algorithms in management applications. In: J. Biethahn, V. Nissen (Eds.), Evolutionary Algorithms in Management Applications, Springer, Berlin, 3‐43. 14. Rechenberg, I., 1973. Evolution strategie: Optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann‐Holzboog, Stuttgart. 15. Sharpe, W. F., and Tint, L. G., 1990. Liabilities‐a new approach. Journal of Portfolio Management 16, 5‐10. 16. Schwefel, H.‐P., 1981. Numerical Optimization for Computer Models. John Wiley, Chichester. 17. Tekin, E. and Sabuncuoglu, I., 2004. Simulation optimization: A comprehensive review on theory and applications. IIE Transactions 36, 1067‐1081. 18. Vesterstrom, J. and Thomsen, R., 2004. A comparative study of differential evolution, particle warm optimization, and evolutionary algorithms on numerical benchmark 66 problems. Congress on Evolutionary Computation, 19‐23. 19. Yao, X. and Liu, Y., 1996. Fast evolutionary programming. Proceedings of the Fifth Annual Conference on Evolutionary Programming, 451‐460. 20. Zbigniew, M., 1996, Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York. |
Description: | 博士 國立政治大學 資訊管理研究所 92356508 97 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0923565081 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 224 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|