政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/31056
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50753772      Online Users : 711
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/31056
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/31056


    Title: 工作-科技配合度擴充模式:以線上學習回饋為例
    Authors: 黃和勤
    Contributors: 傅豐玲
    黃和勤
    Keywords: 線上學習
    回饋功能
    工作-科技配合度
    Date: 2002
    Issue Date: 2009-09-14 09:10:13 (UTC+8)
    Abstract: 與傳統的學習環境相較,線上學習雖然減少了面對面的互動機會,但卻提供了更多其他方式的回饋功能,增加了更多的互動機會與回饋。文獻指出「有用」、「易用」、「回饋反應時間」及「回饋內容」會影響到學習者的學習情形。目前對工作-科技配合度的研究大多偏向軟體維護工作,本研究試圖修正及結合工作-科技配合度模式(Task-Technology Fit Model, TTF)與科技接受度模式(Technology Acceptance Model, TAM),來驗證:(1)配合度變項的存在並驗證配合度會正向影響使用;(2)找出合適的衡量線上學習回饋功能的構面;(3)七項回饋功能在四構面上的認知差異;(4)擴充及結合TTF與TAM二模式以驗證個人的「喜好」會正向影響其「使用」;(5)回饋功能四構面「有用」、「易用」、「回饋反應時間」及「回饋內容」分別會正向影響「喜好」。

    研究結果顯示:(1)只有四項回饋功能「線上傳訊/對談」、「郵寄助教」、「成績資訊」及「主題討論」中「工作-科技配合度」的存在是合適的且「工作-科技配合度」會正向影響個人的「使用」;(2)由信度、效度分析顯示「功能有用」、「功能易用」、「回饋反應時間」及「回饋內容」四構面合適用來衡量線上學習回饋功能;(3)七項回饋功能在四構面上有認知差異;(4)七項回饋功能的個人「喜好」均會正向影響其「使用」;(5)使用者認知「功能有用」會正向影響個人的「喜好」(七種功能都有);「功能易用」會正向影響個人的「喜好」(課程討論、線上傳訊/對談、郵寄助教、平時測驗、成績資訊);「回饋反應時間」會正向影響個人的「喜好」(課程討論、成績資訊);「回饋內容」的正確與有效幫助會正向影響個人的「喜好」(七種功能都有)。
    Reference: 中文部份
    1. 王秋華,「網路教學之學生學習行為與學習滿意度及學習績效的關係」,大葉大學資訊管理研究所碩士論文,民國90年6月。
    2. 古永嘉譯,「企業研究方法第五版(Cooper, D. R. and Emory, C. W.原著)」,華泰文化,台北,民國85年3月。
    3. 李怡慧,「網路教學環境上群組合作學習分組方式之探討」,中山大學資訊管理研究所碩士論文,民國89年6月。
    4. 李美慧,「科技接受模式在非同步網路學習系統使用意向之應用」,中正大學資訊管理研究所碩士論文,民國90年7月。
    5. 李美華等譯,「社會科學研究方法初版(Earl Babbie原著第八版)」,時英出版,台北,民國87年2月。
    6. 林甘敏、陳年興,「網路大學學習問題探討」,資訊管理研究,第4卷第2期,民國91年7月,頁65-85。
    7. 林東清、孫培真,「系統使用調適過程對Web遠距作學習系統成功使用之影響:一個以調適性結構化理論為基礎之研究」,資訊管理學報,第7卷第2期,民國90年1月,頁193-214。
    8. 兩岸理財通,http://www.ez24h.com,查詢日期:民國91年9月8日。
    9. 周文賢,「多變量統計分析」,初版,智勝文化,民國91年6月。
    10. 吳明隆,「SPSS統計應用實務」,二版,文魁資訊,民國91年9月。
    11. 吳肇銘、范錚強,「網站使用意向模型之建構與實證-技術接受模型之運用」,管理學報,第17卷第3期,民國89年9月,頁461-481。
    12. 張金鐘,「以科技接受模式探討教師與學生採用數位化教材的態度」,國立中山大學資訊管理研究所碩士在職專班碩士論文,民國91年7月。
    13. 黃貝玲,「從線上學習的發展看企業線上訓練」,電子化企業經理人報告,No.19,民國90年3月,頁13 - 23。
    14. 黃俊英,「多變量分析」,第七版,中國經濟企業研究所,民國89年。
    15. 董和昇、梁定澎,「以認知學習觀點與任務-科技適配理論建構網際網路使用者資訊取得行為模型」,海峽兩岸管理資訊系統接軌暨第四屆資訊管理博士生論文研討會論文集 (台灣地區博士生論文集),民國91年4月,上海,頁101 - 107。
    16. 盧希鵬、林娟娟,「從資訊系統品質的角度探討WWW網站的接受程度」,國科會研究計畫:NSC 88-2416-H-011-011,執行期限:民國87年8月1日至88年7月31日。
    17. 謝明瑞,「遠距教育與媒體」,隔空教育論叢,第13輯,民國90年,頁36 - 42。
    18. 藍鴻文,「服務接觸中科技介入之影響-以網路教學為例」,國立中山大學企業管理研究所碩士論文,民國91年6月。
    19. 蘇幼良,「以建構主義教學策略探究國小二年級學童對聲音的概念學習」,國立台北師範學院數理教育研究所,民國91年6月。
    20. 蘇宏松,「以科技接受模型探討不同購買涉入下消費者對電子商店的使用意圖」,第3屆產業資訊管理學術暨新興科技研討會論文集(上集),台北,民國91年11月,頁289-298。
    21. 鐘惠貞,「影響網際網路上服飾採購的因素及性別的考量」,大葉大學事業經營研究所碩士論文,民國87年7月。
    英文部份
    1. Aiken, E. G., “Delayed feedback effects on learning and retention of Morse Code symbols,” Psychological Reports (23), 1968, pp. 723-730.
    2. Beeson, R. O. “Immediate knowledge of results and test performance,” Journal of Educational Research (66), 1973, pp. 224-226.
    3. Butler, D. L. and Winne, P. H. “Feedback and self-regulated learning: A theoretical synthesis,” Review of Educational Research (65 : 3), Fall 1995, pp. 245-281.
    4. Bationo, B. “The effects of three feedback forms on learning through a computer based tutorial,” Calico Journal (10 : 1), 1992, pp. 45-52.
    5. Balzer, W. K., Doherty, M. E. and O’Connor, R. “Effects of Cognitive feedback on performance,” Psychological Bulletin (106), 1989, pp. 410-433.
    6. Branson, R. W. and Grow, G. “Instructional systems development,” in Instructional Technology: Foundations, Gagne, R. M. (ed.), Lawrence Erlbaum Associates Publishers, Hillsdale, NJ, pp. 397-428, 1987.
    7. Banathy, B. H. A System View of Education; Concepts and Principles for Effective Practice, Educational Technology Publications, Englewood Cliffs, NJ, 1992.
    8. Carpenter, R. A. “A descriptive analysis of relationships between verbal behaviors of teacher-conductors and ratings of selected junior and senior high school rehearsals,” Applications of Research in Music Education (7 : 1), 1988, pp. 37-40.
    9. Cox, S. S. and Swanson, M. S. “Identification of teaching excellence in operating room and clinic Settings,” The American Journal of Surgery (183 : 3), March 2002, pp. 251-255.
    10. Cohen, J. Statistical Power Analysis for the Behavior Scinece, 2 er., Lawrence Erlbaum Association, Hillsdale, NJ, 1988.
    11. Duke, R. A., Prickett, C. A. and Jellison, J. A. “Empirical description of the pace of music instruction,” Journal of Research in Music Education (46), 1998, pp. 265-280.
    12. Duke, R. A. and Henninger, J. C. “Teachers’ verbal corrections and observers’ perceptions of teaching and learning,” JRME 2002 (50 : 1), 2002, pp. 75-85.
    13. Duke, R. A. “Teacher and student behavior in Suzuki string lessons: Results from the International Research Symposium on Talent Education,” Journal of Research in Music Education (47), 1999, pp. 293-307.
    14. Davis, F. D. “A Technology Acceptance Model of Empirically Testing New End-User Information Systems: Theory and Results,” Doctoral Dissertation, MIT Sloan School of Management, Cambridge, MA, 1986.
    15. Davis, F. D. “Perceive Usefulness, Perceived of Ease of Use, and End User Acceptance of Information technology,” MIS Quarterly (13 : 3), 1989, pp. 319-340.
    16. Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. “User acceptance of computer technology: a comparison of two theoretical models,” Management Science (35 : 8), August 1989, pp.982-1003.
    17. Dick, W. and Carey, L. The Systematic Design of Instruction, 3 nd ed., Harper Collins Publishers, New York, NY, 1990.
    18. Dishaw, M. T. and Strong, D. M. “Extending the technology acceptance model with task-technology fit constructs,” Information & Management (36), 1999, pp. 9-21.
    19. Dishaw, M. T. and Strong, D. M. “Supporting software maintenance with software engineering tools: A Computed task-technology fit analysis,” The Journal of Systems and Software (44), 1998, pp. 107-120.
    20. Dishaw, M. T. and Strong, D. M. “Assessing Software Maintenance Tool Utilization using Task-Technology Fit and Fitness-for-use Models,” Journal of software maintenance: Research and Practice (10), 1998b, pp. 151-179.
    21. Dishaw, M. T., and Strong, D. M., Google.com ”Experience as a Moderating Variable in a Task-Technology Fit Model”
    http://www.isworld.org/ais.ac.98/proceedings/track17/dishaw.pdf, search date: 2002/11/03
    22. Dempsey, J. V., Drisoll, M. P. and Swindell, L. K. “Text-based feedback,” in Interactive Instruction and Feedback, Dempsey, J. V. and Sales, G. C. (eds.), Educational Technology Publications, Englewood Cliffs, NJ, 1993, pp.21-54.
    23. Epstein, M. L., Lazarus, A. D., Calvano, T. B. and Matthews, K. A. “Immediate feedback assessment technique promotes learning and corrects inaccurate first responses,” The Psychological Record (52 : 2), Spring 2002, pp. 187-201.
    24. Gaynor, P. “The effect of feedback delay on retention of computer-based mathematical material,” Journal of Computer-Based Instruction (8), 1981, pp. 28-34.
    25. Goodhue, D. L. and Thompson, R. L. “Task-Technology Fit and Individual Performance,” Mis Quarterly (19 : 2), June 1995, pp. 213-236.
    26. Goodhue, D. L. “Understanding User Evaluations of Information Systems,” Management Science (41 : 12), December 1995, pp. 1827-1844.
    27. Goodhue, D. “The Model Underlying the Measurement of the Impacts of the IIC on the End-Users,” Journal of The American Society for Information Science (48 : 5), 1997, pp. 449-453.
    28. Goodhue, D., Littlefield, R. and Straub, D. W. “The Measurement of the Impacts of the IIC on the End-Users: The Survey,” Journal of The American Society for Information Science (48 : 5), 1997, pp. 455-465.
    29. Gertner, A. S. “Providing Feedback to Equation Entries in an Intelligent Tutoring System for Physics,” Lecture Notes in Computer Science (1452), 1998, pp. 254-264.
    30. Goette, T. “Keys to the adoption and use of voice recognition technology in organizations,” Library Computing (19 : 3/4), 2000, pp.235-244.
    31. Google.com ”Feedback in Computer Assisted Instruction and Computer Assisted Language Learning”
    http://www.edb.utexas.edu/mmresearch/Students96/Buscemi/researchproject.html, search date: 2002/07/09
    32. Hair, F. J., Anderson, E. R., Tatham, L. R. and Black, C. W. Multivariate Data Analysis, 5 th ed, Prentice-Hall International Inc, 1998.
    33. Hetherington, E. M. and Ross, L. E. “Discrimination learning by normal and retarded children under delay of reward and interpolated task conditions,” Child Development (38), 1967, pp. 639-647.
    34. Hong, K. K. and Kim, Y. G. “The critical success factors for ERP implementation: an organizational fit perspective,” Information & Management (40), 2002, pp.25-40.
    35. Jacobs, G. M., Curtis, A., Braine, G. and Huang, S. Y. “Feedback on student writing-taking the middle path,” Journal of Second Language Writing (7 : 3), September 1998, pp. 307-317.
    36. Kostka, M. J. “An investigation of reinforcements, time use, and student attentiveness in piano lesssons,” Journal of Research in Music Education (32), 1984, pp. 113-122.
    37. Kulhavy, R. W. and Stock, W. A. “Feedback in written instruction: The place of response certitude,” Educational Psychology Review (1), 1989, pp.279-308.
    38. Kulhavy, R. W. and Wager, W. “Feedback in programmed instruction: Historical context and implications for practice,” In Interactive instruction and feedback (pp.3-20), Dempsev, J. V. and Sales, G. C. (eds.), Educational Technology Publications, Englewood Cliffs, NJ, 1993.
    39. Ley, K. “providing feedback to distant students,” Campus-Wide Information Systems (16 : 2), 1999, pp. 63-69.
    40. Lin, J. C. and Lu, H. “Towards an understanding of the behavioural intention to use a web site,” International Journal of Information Management (20), 2000, pp. 197-208.
    41. McBeath, R. Instructing and Evaluating in Higher Education; A Guidebook for Planning Learning Outcomes, Educational Technology Publications, Englewood Cliffs, NJ, 1992.
    42. Mathieson, K. and Keil, M. “Beyond the interface: Ease of use and task/technology fit,” Information & Management (34), 1998, pp. 221-230.
    43. Ovando, M. N. “Constructive Feedback: A Key to Successful Teaching and Learning,” International Journal of Educational Management (8 : 6), 1994, pp.19-22.
    44. Paukert, J. L., Richards, M. L. and Olney, C. “An encounter card system for increasing feedback to students,” The American Journal of Surgery (183 : 3), March 2002, pp. 300-304.
    45. Pressey, S. L. “A simple device which gives tests and scores and teaches,” School and Society (23), 1926, pp.373-376.
    46. Reiser, R. A. and Dick, W. Instructional Planning; A Guide for Teachers, Allyn and Bacon, Boston, MA, 1996.
    47. Rankin, R. J. and Tepper, T. “Retention and delay of feedback in a computer assisted instruction task,” Journal of Experimental Education (46), 1978, pp. 67-70.
    48. Ross, S. M. and Morrison, G. R. “Using feedback to adapt instruction for individuals,” in Interactive instruction and feedback (pp.177-195), Dempsev, J. V. and Sales, G. C. (eds.), Educational Technology Publications, Englewood Cliffs, NJ, 1993.
    49. Reid, I. C. “Reflections on using the Internet for the evaluation of course delivery,” The Internet and Higher Education (4 : 1), 1st quarter 2001, pp. 61-75.
    50. Serwatka, J. A. “Improving student performance in distance learning courses,” T.H.E. Journal (29 : 9), Apr 2002, pp. 46-51.
    51. Schutz, P. A. and Weinstein, C. E. “Using Test Feedback to Facilitate the Learning Process,” Innovation Abstracts NISOD (12 : 6), 1990, pp. 1-2.
    52. Skinner, B. F. “Teaching machines,” Science (128), 1958, pp. 969-977.
    53. Sales, G. C. “Designing feedback for CBI: Matching feedback to the learner and learning outcomes,” Computers in the School (5 : 1/2), 1988, pp. 225-239.
    54. Sales, G. C. “Adapted and adaptive feedback in technology based instruction,” In Interactive instruction and feedback (pp.159-175), Dempsev, J. V. and Sales, G. C. (eds.), Educational Technology Publications, Englewood Cliffs, NJ, 1993.
    55. Schweir, R. “Issues in emerging interactive technologies,” in Instructional Technology: Past, Present, and Future, 2nd ed., Anglin, G. J. (ed.), Libraries Unlimited, Inc., Englewood, CO, 1995, pp. 10-19.
    56. Smith, P. and Ragan, T. Instructional Design, Merrill, New York, NY, 1992.
    57. Shneiderman, B. Designing the User Interface Strategies for Effective Human-Computer Interaction, 3 nd ed., ADDISON WESLEY, 1998.
    58. Slavings, R., Cochran, N. and Bowen, G. W. “Result of a National Survey on College Chemistry Faculty Beliefs and Attitudes of Assessment-of-Student-Learning Practices,” The Chemical Educator (2 : 1), 1997, pp. 1-28.
    59. Staples, D. S., and Jarvenpaa, S. L., Google.com ”Using electronic media for information sharing activities: A Replication and Extension”
    http://staples.bus.queensu.ca/research/ICIS%202000%20final.pdf, search date: 2002/11/03
    60. Tessmer, M. Planning and Conducting Formative Evaluations, Kogan Page, London, 1993.
    61. Tecuci, G. and Keeling, H. “Developing Intelligent Educational Agents with the Disciple Learning Agent Shell,” Lecture Notes in Computer Science (1452), 1998, pp. 454-463.
    62. Tang, C., Li, Q., Lau, R. W.H. and Huang, X. “Supporting Practices in Web-Based Learning,” Lecture Notes in Computer Science (2436), 2002, pp. 300-309.
    63. Webb, J. M., Stock, W. A. and McCarthy, M. T. “The effects of feedback timing on learning facts: The role of response confidence,” Contemporary Educational Psychology (19), 1994, pp. 251-265.
    64. Wolcott, L. L. “The distance teacher as reflective practitioner,” Educational Technology (35 : 1), 1995, pp. 39-43.
    65. Wager, W. and Wager, S. “Presenting questions, processing responses, and providing feedback in CAI,” Journal of Instructional Development (8 : 4), 1986, pp. 2-8.
    66. Yarbrough, C. and Price, H. E. “Prediction of performer attentiveness based on rehearsal activity and teacher behavior,” Journal of Research in Music Education (29), 1981, pp. 209-217.
    67. Lending, D. and Straub, D. W. “Impacts of an Integrated Information Center on Faculty End-Users: A Qualitative Assessment,” Journal of The American Society for Information Science (48 : 5), 1997, pp. 466-471.
    68. Zigurs, I. and Buckland, B. K. “A Theory of Task/Technology Fit and Group Support Systems Effectiveness,” MIS Quarterly (22 : 3), 1998, pp. 313-334.
    Description: 碩士
    國立政治大學
    資訊管理研究所
    90356018
    91
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0090356018
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2228View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback