Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/30983
|
Title: | 兩階段求解校務基金最適資產配置 |
Authors: | 張埕語 |
Contributors: | 顏錫銘 張埕語 |
Keywords: | 資產配置 拔靴法 校務基金 最小要求報酬 |
Date: | 2005 |
Issue Date: | 2009-09-14 09:00:19 (UTC+8) |
Abstract: | 本研究摒棄傳統上假設金融資產的報酬率呈現常態分配或t分配,而以定態拔靴法的方式來模擬真實報酬率的分配,配合最小要求報酬限制模型,在既定風險下追求校務基金的報酬極大。本研究使用由下而上的資產配置方式,透過某些篩選機制挑選出優異的十檔股票、四檔債券型基金、三檔公債和定存形成投資組合,並以1998年3月到2006年2月共96筆月資料進行分析,決定最適資產配置。此外為檢驗最適資產配置的結果和績效,分別以不同的最小要求報酬 (0、-5%、-10%)、不同的時間長度(月、季、半年、一年)為調整期間以及考慮實際交易費用與否來進行樣本外測試,做法為從1998年3月開始,每次皆以五年共60個月的資料來對下一年(12個月)資產配置的報酬進行測試,以rolling的方式每次去掉第一個月(一季、半年、一年),再補上新一個月(一季、半年、一年)來測試最佳的資產配置方式。實證結果顯示在考慮交易成本之後,最小要求報酬為0(即不損失)的投資組合其Sharpe ratio皆為負數,代表投資組合的績效不如定存,還不如將錢都放在定存。因此本文將建議使用 為-5%或-10%資產配置方式,同時一個月調整一次投資組合,將可獲得較佳的投資績效。 In this study, we implement the simulation of the real distributions of financial assets by means of the stationary bootstrap method instead of assuming normal distribution or t distribution. With the assistance of minimum required return model, we pursue the maximum profit under finite risk. We use the bottom-up asset allocation and select excellent investments by some criteria to form the portfolio, including four bond funds, ten stocks, three bonds and a time deposit. We use 96 monthly data from March 1998 to February 2006 to decide the best way for asset allocation . Besides, to make sure the asset allocation is practical, we also take transaction costs into account and conduct an out-of-sample test with different minimum required returns (0, -5%, -10%) and different holding periods (a month, a quarter, half a year, a year) to decide the best way for asset allocation. Starting from March 1998, we conduct an out-of-sample test with a solid 60-month data each time to test the return of the following year under specified asset allocation decisions. This is then done repeatedly by using the method of rolling, replacing the 1st-month data (1st-quarter data, 1st-half year data, 1st-year data) with new monthly data (quarterly data, semi-annual data, annual data) to find the best asset allocation. The Empirical result shows that after transaction costs are taken into account, the Sharpe ratios of the portfolio with the equal to zero are negative and the return are worse than the interest rate of the time deposit. Therefore, the asset allocation with equal to -5% or -10% will be recommended. Besides, monthly portfolio adjustment is better. |
Reference: | 中文部分 1.江義玄,「投資組合之風險評價:新模擬方法的運用」,國立政治大學企 業管理研究所碩士論文,民國89年6月。 2.李吉元,「風險值限制下最適資產配置」,國立成功大學財務金融研究所 碩士論文,民國92年6月。 3.李松杰,「退休基金管理運用與委託經營之配置策略」,國立政治大學企業 管理研究所碩士論文,民國89年。 4.李進生,「風險管理:風險值理論與運用」,清蔚科技,民國90年。 5.陳信宏,「如何有效提升我國特種基金(含郵儲、勞保、勞退、退撫等基 金)之資金運用效率以計量財務提升特種基金營運績效之研究。民國90年。 6.黃致翔,「最佳投資組合研究-以台股為例」,國立中央大學統計研究所碩 士論文,民國93年。 7.閔志清,「台灣基金資產配置之研究」,國立台灣大學財務金融研究所碩士 論文,民國86年6月。 8.簡佳至,「限制下方風險的資產配置」,國立政治大學金融研究所碩士論 文,民國90年5月。 9.簡明照,「投資組合成份涉險值限制下之資產配置模型-以郵匯局股票基金 之資產管理為例」,銘傳大學金融研究所在職專班,民國90年。 10.蒲建亨,「整合VaR法之衡量與驗證~以台灣金融市場投資組合為例」, 國立政治大學國際貿易研究所碩士論文,民國90年6月。 11.蔡厚毅,「加權下方風險在投資組合上的應用」,國立台北大學經濟學 研究所碩士論文,民國93年6月。 英文部分 1.Campbell,R., R.Huisman, and K.Koedijk.“Optimal portfolio selection in a Value-at-Risk framwork.” Journal of Banking and Finance,2001. 2.Efron,B.“Bootstrap Methods:Another Look at the Jackknife.” The Annals of Statistics,1979. 3.Evans,J.L., and S.H.Archer.“Diversification and the Reduction of Dispersion: An Empirical Analysis.”The Journal of Finance,1968. 4.Fama,E.F.“Efficient Capital market:A Review of Theory And Empirical Work.”Journal of Finance,1969. 5.Jorion,P.“ Risk2: Measuring the Risk in Value at Risk.” Financial analysts Journal,1996. 6.Kahneman,D., J.L.Knetsch, and R.H.Thaler.“Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias.” The Journal of Economic Perspectives,1991. 7.Leibowitz,M.L., and S.Kogelman.“Asset Allocation under Shortfall Constraints.”Journal of Portfolio Management,1991. 8.Levy,H., and H.M.Markowitz.“Approximating Expected Utility by a Function of Mean and Variance.”The American Economic Review,1979. 9.Lucas,A., and P.Klaassen.“Extreme Returns, Downside Risk, and Optimal Asset Allocation.”Journal of Portfolio Management,1998. 10.Markowitz,H.M.“Portfolio Selection.”Journal of Finance, 1952. 11.Politis,D.N., and J.P.Romano.“The Stationary Bootstrap.”Journal of the American Statistical Association,1994. 12.Roy,A.D.“Safety-first and the holding of assets.” Econometrics,1952. 13.Sharpe,W.F.“ The Sharpe Ratio.”Journal of Portfolio Management,1994. 14.Statman,M.“ How Many Stocks Make a Diversified Portfolio.”Journal of Financial and Quantitative Analysis,1987. 15.Vazquez-Abad, F.J., and Y.Champoux.“SimSpiders: Generation of RandomVariables.” http://www.ee.unimelb.edu.au/staff/fva /SimSpiders/ GenerRV/Methods.html |
Description: | 碩士 國立政治大學 財務管理研究所 93357028 94 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0093357028 |
Data Type: | thesis |
Appears in Collections: | [財務管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 252 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|